首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of B2O3/CuO and BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of Ba2Ti9O20 ceramics were investigated. The B2O3 added Ba2Ti9O20 ceramics were not able to be sintered below 1000 °C. However, when both CuO and B2O3 were added, they were sintered below 900 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the Ba2Ti9O20 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the Ba2Ti9O20 ceramics. Good microwave dielectric properties of Qxf = 16,000 GHz, ɛr = 36.0 and τf = 9.11 ppm/°C were obtained for the Ba2Ti9O20 ceramics containing 10.0 mol% BaCu(B2O5) sintered at 875 °C for 2 h.  相似文献   

2.
BaCu(B2O5) is a typical microwave dielectric ceramic (MDC) with a low sintering temperature, but it exhibits a large negative temperature coefficient of resonant-frequency (τf) which makes it difficult to use in wireless communications. We employ TiO2 to improve its temperature-stability of resonant-frequency, and reveal the effects of TiO2 on the densification and the microwave dielectric properties of BaCu(B2O5). Here we show that BaCu(B2O5) can be well-sintered at 825 °C with proper TiO2 additions; we find that the TiO2 grains homogeneously distribute in the boundaries of BaCu(B2O5) grains, resulting in the τf compensation of BaCu(B2O5). Enhanced temperature-stability of resonant-frequency can be achieved by increasing the content of TiO2 properly. A novel temperature-stable (1-x)BaCu(B2O5)–xTiO2 (x = 0.20) MDC (τf =?0.8 ± 3.0 ppm/°C, εr = 8.8 ± 0.36, Q×f = 28,612 ± 1170 GHz) is obtained using some low-cost raw materials. Our results provide the underlying insights needed to guide the design of temperature-stable MDCs for wireless communication applications.  相似文献   

3.
A series of 0.9625MgTiO3-0.0375(Ca0.5Sr0.5)TiO3 composite ceramics added with different amounts of B2O3 (1-5 wt%) were prepared via the solid state sintering method using the pre-synthesized raw MgTiO3 and (Ca0.5Sr0.5)TiO3 powders by molten-salt reaction. The sintering temperature of 0.9625MgTiO3-0.0375(Ca0.5Sr0.5)TiO3 composite ceramics can be reduced from 1275°C to 1175°C due to the liquid phase sintering effect of B2O3. When the adding amount of B2O3 was more than 2 wt%, a new phase MgTi2O5 could be detected by X-ray diffraction, which would substantially degrade the dielectric properties of the obtained ceramics. Resultantly, the quality factor (Q·f) and dielectric constant (εr) of the samples increase first and decrease later with increasing addition amount of B2O3. In addition, the temperature coefficient of resonant frequency (τf) progressively increases with increasing content of B2O3. By sintering at 1175°C for 4 hours, the obtained 0.9625MgTiO3-0.0375Ca0.5Sr0.5TiO3 composite ceramics with 2 wt% B2O3 possess the optimal microwave dielectric properties of εr = 18.9, Q·f = 57 000 GHz and τf = −1.2 ppm/°C.  相似文献   

4.
The sintering behaviors and microwave dielectric properties of the Ca0.4Li0.3Sm0.05Nd0.25TiO3 (abbreviated CLSNT) ceramics with different amounts of BaCu(B2O5) addition were investigated in this paper. Adding BaCu(B2O5) to CLSNT lowered its sintering temperature from 1300 °C to 925 °C. No secondary phase was observed in the CLSNT ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLSNT ceramics with small amounts of BaCu(B2O5) addition could be well sintered at 925 °C without much degradation in the microwave dielectric properties. Especially, the 1.75 wt.% BaCu(B2O5)-doped CLSNT ceramic sample sintered at 925 °C for 3 h had optimum microwave dielectric properties of εr = 93.5 ± 3.2, Q × f = 6486 ± 434 GHz, and τf = 5 ± 1.5 ppm/°C (at 3–4 GHz), enabling it a promising candidate material for LTCC applications. Obviously, BaCu(B2O5) could be a suitable sintering aid to facilitate the densification and microwave dielectric properties of the CLSNT ceramics.  相似文献   

5.
0.9(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–0.1(Ca0.8Sr0.2)TiO3 (MZTS–CST) ceramics were prepared by a conventional solid‐state route. The MZTS–CST ceramics sintered at 1325°C exhibited εr = 18.2, Q × f = 49 120 GHz (at 8.1 GHz), and τf = 15 ppm/°C. The effects of LiF–Fe2O3–V2O5 (LFV) addition on the sinterability, phase composition, microstructure, and microwave dielectric properties of MZTS–CST were investigated. Eutectic liquid phases 0.12CaF2/0.28MgF2/0.6LiF and MgV2O6 were developed, which lowered the sintering temperature of MZTS–CST ceramics from 1325°C to 950°C. X‐ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS) analysis revealed that MZTS and CST coexisted in the sintered ceramics. Secondary phase Ca5Mg4(VO4)6 as well as residual liquid phase affected the microwave dielectric properties of MZTS–CST composite ceramics. Typically, the MZTS–CST–5.3LFV composite ceramics sintered at 950°C showed excellent microwave dielectric properties: εr = 16.3, Q × f = 30 790 GHz (at 8.3 GHz), and τf = ?10 ppm/°C.  相似文献   

6.
The sintering behaviors and dielectric properties of Ba0.6Sr0.4TiO3 ceramics were investigated as a function of B2O3 and CuO content. The addition of both B2O3 and CuO reduced the sintering temperature of Ba0.6Sr0.4TiO3 about 500°C. It was suggested that a liquid phase BaCu(B2O5) was formed and assisted the densification of Ba0.6Sr0.4TiO3 ceramics. Ba0.6Sr0.4TiO3 ceramics co‐doped with 3.0 mol% B2O3, and 2.0 mol% CuO, sintered at 950°C for 5 h, had a dense microstructure and showed good microwave dielectric properties of a moderate dielectric constant (ε = 1048), low dielectric loss (0.0090) and high tunability (42.2%) at dc electric field of 30 kV/cm.  相似文献   

7.
Novel microwave dielectric ceramics in the Li2MnO3 system with high Q prepared through a conventional solid‐state route had been investigated. All the specimens exhibited single phase ceramics sintered in the temperature range 1140°C–1230°C. The microwave dielectric properties of Li2MnO3 ceramics were strongly correlated with sintering temperature and density. The best microwave dielectric properties of εr = 13.6, Q × f = 97 000 (GHz), and τf = ?5.2 ppm/°C could be obtained as sintered at 1200°C for 4 h. BaCu(B2O5) (BCB) could effectively lower the sintering temperature from 1200°C to 930°C and slightly induced degradation of the microwave dielectric properties. The Li2MnO3 ceramics doped with 2 wt% BaCu(B2O5) had excellent dielectric properties of εr = 11.9, Q × f = 80 600 (GHz), and τf = 0 ppm/°C. With low sintering temperature and good dielectric properties, the BCB added Li2MnO3 ceramics are suitable candidates for LTCC applications in wireless communication system.  相似文献   

8.
Microwave dielectric properties of Li‐containing orthorhombic compounds with the composition of MLi2Ti6O14 (M = Ba and Sr) were investigated. The ceramics were synthesized by the conventional solid‐state reaction route. The optimized sintering temperatures for the BaLi2Ti6O14 and SrLi2Ti6O14 ceramics are 1025°C and 1000°C, respectively. Favorable microwave dielectric properties were obtained with moderate εr of 31.7 and 33.6, quality factor Q × f values of 23 300 (at 7.3 GHz) and 8700 GHz (at 6.8 GHz), and low‐temperature coefficient of resonant frequency (τf) values of ?15.4 and ?2.7 ppm/°C for BaLi2Ti6O14 and SrLi2Ti6O14 ceramics, respectively. The addition of BaCu(B2O5) can effectively reduce the sintering temperature below 930°C without degrading the microwave dielectric properties. Compatibility with Ag electrode indicates these materials could be applied to low‐temperature cofired ceramic devices.  相似文献   

9.
Regarding advanced 5G mobile communication, microwave dielectric ceramics are considered as the most potential materials to develop new-generation base station resonators. Herein, ZnNb2O6 ceramics with εr of approximately 24 have been prepared using the solid-state reaction method, with tailored extra ZnO of x mol% (x = 1, 2 and 3). We have for the first time applied the P-V-L chemical bond theory to investigate ZnNb2O6 ceramics with ZnO doping, by exploring the relationship of dielectric properties and chemical bond characteristics. Particularly, the Raman spectra demonstrates that the full width at half maximum of υ1 (Ag) vibration mode can exhibit significant correlation with the quality factor (Q × f ). To further support the experimental study, we have also conducted the first-principle calculation of electron density difference via CASTEP package, which further confirms the change of temperature coefficient of resonance frequency (τf ). Our newly designed ZnNb2O6 ceramics doped with 1 mol% ZnO exhibit excellent dielectric properties, i.e., εr = 23.74, Q × f = 102,824 GHz and τf = ?55.38 ppm/°C, which demonstrates great potential to construct miniaturized 5G base station with advanced ceramic dielectrics.  相似文献   

10.
The effects of ZnO and B2O3 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O‐1Nb2O5‐5TiO2 (LNT) ceramics have been investigated. With addition of low‐level doping of ZnO and B2O3, the sintering temperature of the LNT ceramics can be lowered down to near 920°C due to the liquid phase effect. The Li2TiO3ss and the “M‐phase” are the two main phases, whereas other phase could be observed when co‐doping with ZnO and B2O3 in the ceramics. And the amount of the other phase increases with the ZnO content increasing. The addition of ZnO does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the good microwave dielectric properties of εr = 36.4, Q × = 8835 GHz, τf = 4.4 ppm/°C could be obtained for the 1 wt% B2O3 and 4 wt% ZnO co‐doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as internal electrode.  相似文献   

11.
Low-temperature co-fired ceramics technology (LTCC) exhibits enormous superiorities in packaging, integration, and interconnection. However, the complex compositions of low-melting point sintering aids may react with ceramic matrix, which increases the difficulties of phase control and tape casting. In this work, the Li2CO3–B2O3–Bi2O3–SiO2 (LBBS) sintering aid was adopted to sinter ZnZrNb2O8 ceramics with single phase at low temperatures. The LBBS glass could be used to fabricate pure-phase ZnZrNb2O8 ceramics at a low sintering temperature, promote the grain growth, and increase the densification of ZnZrNb2O8 ceramics. Furthermore, the unit cell volume, NbO6 octahedral distortion, Raman shift, and FWHM changed along with LBBS addition, thereby affecting the microwave dielectric properties. Remarkably, ZnZrNb2O8 ceramics doped with 0.75 wt.% LBBS at 950°C were chemically compatible with the silver electrode and exhibited excellent microwave dielectric characteristics: εr = 27.1, Q × f = 54 500 GHz, and τf = −48.7 ppm/°C, providing candidates for LTCC applications.  相似文献   

12.
The microwave dielectric properties of alumina (Al2O3) ceramics were studied. The objectives were to improve the large negative temperature coefficient of the resonant frequency (τf) of Al2O3 ceramics and to obtain a relatively large quality factor (Qf) through the addition of rutile (TiO2), which has a large positive τf, and an annealing treatment. A near-zero τf (+1.5 ppm/°C), excellent Qf (148,000 GHz) and ɛr (12.4) were obtained in 0.9 Al2O3–0.1 TiO2 ceramics sintered at 1350 °C for 2 h, followed by annealing at 1100 °C for 12 h in air.  相似文献   

13.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

14.
A total of 14 fluoride composite ceramics were prepared through solid-state method and their microwave dielectric properties were investigated. Among the fluoride composite ceramics, 0.36LiF–0.39MgF2–0.25SrF2 (LMS) had the lowest sintering temperature (600°C) and presented a dielectric constant (εr) of 6.24 ± 0.05, a quality factor (Q × f) of 33 274 ± 900 GHz, and a temperature coefficient resonant frequency (τf) of −86.74 ± 8 ppm/°C. As the LMS ceramic had a low melting point (646°C), it can be used as sintering aid for LTCC applications. The sintering temperature of BaCuSi2O6 decreased from 1050°C to 875°C with 2 wt% LMS doped and excellent microwave dielectric properties of εr = 8.16 ± 0.04, Q × f = 24 351 ± 300 GHz, and τf = −9.74 ± 1 ppm/°C were obtained. Moreover, BaCuSi2O6-2 wt% LMS can be co-fired with Ag powders, which makes it a potential new candidate for LTCC applications.  相似文献   

15.
The microwave dielectric properties of LiNb3O8 ceramics were investigated as a function of the sintering temperature and the amount of TiO2 additive. LiNb3O8 ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a dielectric constant (ɛr) of 34, a quality factor (Q × f0) of 58,000 GHz and a temperature coefficient of resonance frequency (τf) of −96 ppm/°C, respectively. The density of the samples influenced the properties of these properties. As the TiO2 content increased in the LiNb3O8–TiO2 system, ɛr and τf of the material were increased due to the mixing effect of TiO2 phase, which has higher dielectric constant and larger positive τf. The 0.65LiNb3O8–0.35TiO2 ceramics showed a dielectric constant ɛr of 46.2, a quality factor (Q × f0) of 5800 GHz and a temperature coefficient of resonance frequency τf of near to 0 ppm/°C.  相似文献   

16.
A new Li‐containing microwave ceramic Ba5Li2W3O15 with hexagonal perovskite structure was prepared through a solid‐state ceramic route. Small amount of scheelite BaWO4 appeared as a second phase during sintering. The Ba5Li2W3O15 could be well densified at 1120°C and exhibits good microwave dielectric properties with permittivity (εr) of 25.4, high Q × f value about 39 000 GHz, and low temperature coefficient of resonate frequency (τf) of 10 ppm/°C. The addition of BaCu(B2O5) can effectively lower the sintering temperature from 1120°C to 900°C and does not induce degradation of the microwave dielectric properties. These results indicate that the Ba5Li2W3O15 ceramic might be a promising candidate in microwave dielectric resonators.  相似文献   

17.
The B2O3 added Ba(Zn1/3Nb2/3)O3 (BBZN) ceramic was sintered at 900 °C. BaB4O7, BaB2O4, and BaNb2O6 second phases were found in the BBZN ceramic. Since BaB4O7 and BaB2O4 second phases have an eutectic temperature around 900 °C, they might exist as the liquid phase during sintering at 900 °C and assist the densification of the BZN ceramics. Microwave dielectric properties of dielectric constant (ɛr) = 32, Q × f = 3500 GHz, and temperature coefficient of resonance frequency (τf) = 20 ppm/°C were obtained for the BZN with 5.0 mol% B2O3 sintered at 900 °C for 2 h. The BBZN ceramics were not sintered below 900 °C and the microwave dielectric properties of the BBZN ceramics sintered at 900 °C were very low. However, when CuO was added, BBZN ceramic was well sintered even at 875 °C. The liquid phase related to the BaCu(B2O5) second phase could be responsible for the decrease of sintering temperature. Good microwave dielectric properties of ɛr = 36, Q × f = 19,000 GHz and τf = 21 ppm/°C can be obtained for CuO doped BBZN ceramics sintered at 875 °C for 2 h.  相似文献   

18.
Re3Ga5O12 (Re: Nd, Sm, Eu, Dy and Yb) garnet ceramics sintered at 1350–1500 °C had a high quality factor (Q × f) ranging from 40,000 to 192,173 GHz and a low dielectric constant (ɛr) of between 11.5 and 12.5. They also exhibited a relatively stable temperature coefficient of resonant frequency (τf) in the range of −33.7 to −12.4 ppm/°C. In order to tailor the τf value, TiO2 was added to the Sm3Ga5O12 ceramics, which exhibited good microwave dielectric properties. The relative density and grain size increased with addition of TiO2, resulting in the enhancement of Q × f value. The τf increased with the addition of TiO2. Excellent microwave dielectric properties of ɛr = 12.4, Q × f = 240,000 GHz and τf = −16.1 ppm/°C were obtained from the Sm3Ga5O12 ceramics sintered at 1450 °C for 6 h with 1.0 mol% TiO2. Therefore, Re3Ga5O12 ceramics, especially TiO2-added Sm3Ga5O12 ceramics are good candidates for advanced substrate materials in microwave integrated circuits (MICs) applications.  相似文献   

19.
Preparation and microwave dielectric properties of B2O3‐doped CaLa4Ti4O15 ceramics have been investigated. X‐ray diffraction data show that CaLa4Ti4O15 ceramic has a trigonal structure coupled with a second phase of CaLa4Ti5O17. The CaLa4Ti4O15 ceramic with addition of 0.5 wt% B2O3, sintered at 1220°C for 4 h, exhibits microwave dielectric properties with a dielectric constant of 45.8, Q × f value of 24,000 GHz, and temperature coefficient of resonant frequency (τf) of ?19 ppm/°C. B2O3‐doped CaLa4Ti4O15 ceramics, which have better sintering behavior (decrease in sintering temperature ~ 330°C) and dielectric properties than pure CaLa4Ti4O15 ceramics, are candidates for applications in microwave devices.  相似文献   

20.
《Ceramics International》2022,48(24):36638-36643
The Mg2TiO4-xwt% LiF–2CaF2–2B2O3 (LCB, 3.0 ≤ x ≤ 10.0) ceramics were fabricated to study the relationship among LCB additive and the sintering behavior, phase composition, micro-structure and dielectric performance of ceramics in this study. The sintered ceramics are mainly Mg2TiO4 phase, accompanied by small amount of second phase CaTiO3 and Mg3B2O6. They are generated from the chemical reaction of CaF2 and B2O3 with the matrix material, respectively. Appropriate LCB additive significantly enhanced sintering ability and dielectric performance of Mg2TiO4-based ceramics. Sintered at 1175 °C, Mg2TiO4-7.5 wt% LCB ceramics exhibited a dielectric performance: εr of 15.3, Q × f of 32 950 GHz and τf of +1.96 ppm/°C, which is expected to be an alternative material for communication component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号