首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The recent increased variability of Scotland's hydroclimate poses major problems for water resource managers charged with making informed investment decisions given the likely impact of future climate change. Two strategies are developed in this paper to assist managers faced with this environmental uncertainty. The first involves trend analysis of precipitation and runoff since the 1960s and 1970s viewed against longer-term variability reported from instrumental records. The second strategy is based upon current climate change scenarios coupled with GCMs, and downscaling of precipitation and temperature to provide inputs to rainfall-runoff models. The long-term records of precipitation (back to the 1860s) and runoff (back to the 1930s) reveal the late 1980s and early 1990s as the wettest period on record for the west but not for the east. Over the period 1961-1996 the precipitation gradient has intensified across Scotland: wetter west; relatively dry east. Changes in runoff over the period 1970-1996 are also reported with increases in annual flows at 33 out of 38 stations (significantly at 12 stations) and decreases in low flows at 21 out of 38 stations (significantly at one station). The bulk of these flow increases occurred in the south and west especially in the autumn and spring. In terms of high flows over the period 1970-1996, four out of 44 stations reported a change in magnitude and 15 reported an increase in the frequency of POT events. In terms of future climate change, Hulme and Jenkins (1998) predict annual precipitation increases of 6-16% (Scotland) and 6-14% (Scottish Borders) from the 2020s to the 2080s based on the Hadley Centre model (HadCM2) medium-high scenario. Seasonal changes are concentrated in the autumn (SON) and winter (DJF) with increases as high as 24 and 29% for the autumn by the 2080s. (Arnell NW, et al. Institute of Hydrology Report No. 107, Wallingford, 1996), using an earlier transient Hadley experiment (IS92a), predict a 5-15% increase in annual runoff across Scotland by the 2050s, locally rising to 25%. Simulation flow duration curves for the 2050s generate Q95 values up by 5% or less (Rivers Don, Almond and Nith) and Q5 up by 10-24% (Rivers Don, Almond, Nith and Lyne Water). In terms of water resource planning, these predicted changes should be regarded as first order approximations, as they take no account of natural climatic variability, and could generate different absolute values if other scenarios were used. The predictions are, however, broadly consistent with trends in precipitation and runoff for Scotland since the 1970s. Major issues of concern to water resource managers are identified and commented upon in the light of these predictions.  相似文献   

2.
Temporal trends in stream water total organic carbon (TOC) concentration and export were studied in 8 forested headwater catchments situated in eastern Finland. The Seasonal Kendall test was conducted to identify the trends and a mixed model regression analysis was used to describe how catchment characteristics and hydrometeorological variables (e.g. precipitation, air and stream water temperatures, and atmospheric deposition) related to the variation in the concentration and export of stream water TOC. The 8 catchments varied in size from 29 to 494 ha and in the proportion of peatland they contained, from 8 to 70%. Runoff and TOC concentration were monitored for 15-29 years (1979-2006). Trends and variation in TOC levels were analysed from annual and seasonal time series. Mean annual TOC concentration increased significantly in seven of the eight catchments. The trends were the strongest in spring and most apparent during the last decade of the study period. The slopes of the trends were generally smaller than the variation in TOC concentration between years and seasons and between catchments. The annual TOC export showed no clear trends and values were largely determined by the temporal variability in runoff. Annual runoff showed a decreasing trend in two of the eight catchments. Mean annual air and stream water temperatures showed increasing trends, most clearly seen in the summer and autumn series. According to our modeling results, stream water temperature, precipitation and peatland percentage were the most important variables explaining annual and most seasonal TOC concentrations. The atmospheric deposition of SO4, NH4, and NO3 decreased significantly over the study period, but no significant link with TOC concentration was found. Precipitation was the main hydrometeorological driver of the TOC export. We concluded that stream water TOC concentrations and exports are mainly driven by catchment characteristics and hydrometeorological factors rather than trends in atmospheric acid deposition.  相似文献   

3.
The Mike 11-TRANS modelling system was applied to the lowland Gjern river basin in Denmark to assess climate-change impacts on hydrology and nitrogen retention processes in watercourses, lakes and riparian wetlands. Nutrient losses from land to surface waters were assessed using statistical models incorporating the effect of changed hydrology. Climate-change was predicted by the ECHAM4/OPYC General Circulation Model (IPCC A2 scenario) dynamically downscaled by the Danish HIRHAM regional climate model (25 km grid) for two time slices: 1961-1990 (control) and 2071-2100 (scenario). HIRHAM predicts an increase in mean annual precipitation of 47 mm (5%) and an increase in mean annual air temperature of 3.2 degrees C (43%). The HIRHAM predictions were used as external forcings to the rainfall-runoff model NAM, which was set up and run for 6 subcatchments within and for the entire, Gjern river basin. Mean annual runoff from the river basin increases 27 mm (7.5%, p<0.05) when comparing the scenario to the control. Larger changes, however, were found regarding the extremes; runoff during the wettest year in the 30-year period increased by 58 mm (12.3%). The seasonal pattern is expected to change with significantly higher runoff during winter. Summer runoff is expected to increase in predominantly groundwater fed streams and decrease in streams with a low base-flow index. The modelled change in the seasonal hydrological pattern is most pronounced in first- or second-order streams draining loamy catchments, which currently have a low base-flow during the summer period. Reductions of 40-70% in summer runoff are predicted for this stream type. A statistical nutrient loss model was developed for simulating the impact of changed hydrology on diffuse nutrient losses (i.e. losses from land to surface waters) and applied to the river basin. The simulated mean annual changes in TN loads in a loamy and a sandy subcatchment were, respectively, +2.3 kg N ha(-1) (8.5%) and +1.6 kg N ha(-1) (6.9%). The rainfall-runoff model and the nutrient loss model were chained with Mike 11-TRANS to simulate the combined effects of climate-change on hydrology, nutrient losses and nitrogen retention processes at the scale of the river basin. The mean annual TN export from the river basin increased from the control to the scenario period by 7.7%. Even though an increase in nitrogen retention in the river system of 4.2% was simulated in the scenario period, an increased in-stream TN export resulted because of the simulated increase in the diffuse TN transfer from the land to the surface-waters.  相似文献   

4.
潜在蒸散是区域干湿状况评价、作物需水量估算和水资源合理规划的关键因子。基于FAO推荐的Pen-man-Monteith公式和16个台站1961—2009年逐日气象观测资料,估算塔克拉玛干沙漠周边地区的潜在蒸散量ET0,在对ET0的时空演变特征进行分析的基础上,探讨了影响该地区ET0变化的主要因素。结果表明,塔克拉玛干沙漠周边地区独特的自然地理条件导致多年平均潜在蒸散的分布和变化具有明显的空间差异。49a来塔克拉玛干沙漠周边地区年和四季ET0变化整体上均为下降趋势,时间演变过程中在20世纪90年代初期均由下降趋势转为缓慢上升趋势。空间上,ET0变化在北部地区多为显著下降趋势,而南部地区多不显著;春、夏、秋3季ET0变化趋势的空间分布与年情况比较一致,但冬季ET0呈上升趋势的站点明显增多。影响塔克拉玛干沙漠周边地区多数站点ET0变化的主导因子是风速;第二影响因子春季和夏季主要是日照时数,而影响秋季和冬季ET0变化的主要是平均气温。  相似文献   

5.
提出了桂林市桃花江流域生态环境需水量内涵,即为维护流域生态环境质量在时间上不下降所需要的最小水量。结合实地调研对桃花江流域生态环境需水量进行了初步研究,通过运用蒙大拿法(Montana method)等计算方法,计算得出:该流域河道外生态需水量为0.149亿m^3,占流域年均径流量的4%;河道内生态需水量为1.098亿m^3,占流域年均径流量的30%。本研究为当地水资源可持续利用与管理提供了依据,并可为类似地区生态环境需水研究提供借鉴。  相似文献   

6.
Dynamically downscaled data from two Atmosphere-Ocean General Circulation Models (AOGCMs), ECHAM4 from the Max-Planck Institute (MPI), Germany and HadAm3H from the Hadley Centre (HAD), UK, driven with two scenarios of greenhouse gas emissions (IS92a and A2, respectively) were used to make climate change projections. These projections were then used to drive four effect models linked to assess the effects on hydrology, and nitrogen (N) concentrations and fluxes, in the Bjerkreim river basin (685-km(2)) and its coastal fjord, southwestern Norway. The four effect models were the hydrological model HBV, the water quality models MAGIC, INCA-N and the NIVA FJORD model. The downscaled climate scenarios project a general temperature increase in the study region of approximately 1 degrees C by 2030-2049 (MPI IS92a) and approximately 3 degrees C by 2071-2100 (HAD A2). Both scenarios imply increased winter precipitation, whereas the projections of summer and autumn precipitation are quite different, with the MPI scenario projecting a slight increase and the HAD scenario a significant decrease. As a response to increased winter temperature, the HBV model simulates a dramatic reduction of snow accumulation in the upper parts of the catchment, which in turn lead to higher runoff during winter and lower runoff during snowmelt in the spring. With the HAD scenario, runoff in summer and early autumn is substantially reduced as a result of reduced precipitation, increased temperatures and thereby increased evapotranspiration. The water quality models, MAGIC and INCA-N project no major changes in nitrate (NO(3)(-)) concentrations and fluxes within the MPI scenario, but a significant increase in concentrations and a 40-50% increase in fluxes in the HAD scenario. As a consequence, the acidification of the river could increase, thus offsetting ongoing recovery from acidification due to reductions in acid deposition. Additionally, the increased N loading may stimulate growth of N-limited benthic algae and macrophytes along the river channels and lead to undesirable eutrophication effects in the estuarine area. Simulations made by the FJORD model and the HAD scenario indicate that primary production in the estuary might increase up to 15-20%, based on the climate-induced changes in river flow and nitrate concentrations alone.  相似文献   

7.
We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.  相似文献   

8.
The spatiotemporal analysis of a region's precipitation climate regime could be particularly interesting for many fields of applied sciences, such as climatology, hydrology and water resources management. In this study, the precipitation trends at seasonal and annual scale, over a large area of the northern Hemisphere have been analysed based on a globally gridded precipitation data sets of monthly observations. In particular, among the several data sets available in literature, with spatial resolutions of 0.5° longitude/latitude, in this work the Global Precipitation Climatology Centre Full Data Reanalysis Version 6 data set has been used. The broad extension of the area under investigation allowed a better understanding of trend precipitation patterns over space. In fact, yearly results evidenced a marked negative rainfall tendency in the eastern Mediterranean (more than ?20 mm/10 years) and in North Africa (until ?16 mm/10 years), while a relatively large positive trend (more than 20 mm/10 years) in central and northern Europe has been observed.  相似文献   

9.
Urban development and climate change are expected to have significant effects on urban stormwater runoff. In this study, the Dynamic Urban Water Simulation Model (DUWSiM) is applied to Dublin, Ireland, to explore urban runoff patterns under varying urban growth and climate scenarios. Results show that annual urban runoff could decrease by 3.0% from climate change and monthly runoff could increase by 30% in winter and decrease by 28% in summer. Results also indicate that urban growth could increase annual runoff by up to 15%. The combined effect of climatic and land-use change generated runoff may potentially increase annual totals from between 2.9% to 21%. Monthly changes in runoff totals could increase by up to 57%. Accommodating these variations in runoff between the scenarios, flexible decentralised systems such as green roofs and pervious pavements, have a vital role in increasing the adaptability and long term sustainability of water infrastructure.  相似文献   

10.
The objective of this study is to assess future changes in meteorological, hydrology and agricultural droughts under the impact of changing climate in the Srepok River Basin, a subbasin of LMB, using three drought indices; standardized precipitation index (SPI), standardized runoff index (SRI) and standardized soil moisture index (SSWI). The well‐calibrated Soil and Water Assessment Tool (SWAT) is used as a simulation tool to estimate the features of meteorological, hydrological and agricultural droughts. The climate data for the 2016–2040 period is obtained from four different regional climate models; HadGEM3‐RA, SNU‐MM5, RegCM4 and YSU‐RSM, which are downscaled from the HadGEM2‐AO GCM. The results show that the severity, duration and frequency of droughts are predicted to increase in the near future for this region. Moreover, the meteorological drought is less sensitive to climate change than the hydrological and agricultural droughts; however, it has a stronger correlation with the hydrological and agricultural droughts as the accumulation period is increased. These findings may be useful for water resources management and future planning for mitigation and adaptation to the climate change impact in the Srepok River Basin.  相似文献   

11.
Pollution loads in urban runoff and sanitary wastewater   总被引:18,自引:0,他引:18  
While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.  相似文献   

12.
Much has been written in recent years about the potential threats posed by increasing greenhouse gas concentrations. This paper summarizes the implications of global warming for hydrological processes in general and river flow characteristics in the UK in particular, emphasizing the present high degree of uncertainty. Current climate change scenarios for the UK imply that rainfall between autumn and spring will increase, and this may have beneficial implications for UK water resources. However, the effect of this increase may be outweighed by higher evapotranspiration. Average annual runoff in a catchment in southern UK may be reduced by around 5% by the middle of the next century, but this estimate is very uncertain: runoff may reduce by 30% or increase by 30%. Runoff in northern and western UK is likely to show a slight increase (but with similarly large confidence intervals). It is probable that river flows in the UK will be much more concentrated in winter than at present. The effect of a given climate change scenario on monthly flow regimes depends on the current summer water balance and on catchment geological conditions.  相似文献   

13.
垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析   总被引:1,自引:0,他引:1  
毛细阻滞型腾发封顶目前主要用于国外干旱、半干旱地区,在湿润气候区的研究很少。在杭州市露天构筑毛细阻滞型腾发封顶模型,量测18个月中降水、蒸发和植被蒸腾下土柱透水量、地表径流量和土体含水率,得到该封顶在不同季节的响应,分析了毛细阻滞作用机理及其性能,使用水量平衡模型(HELP)和土壤–植被–大气相互作用模型(VADOSE/W)对试验过程中的水量平衡进行模拟,探讨了数值模拟存在的问题。试验过程中,共降水2361 mm,产生地表径流88.4 mm,透水67.4 mm,其他降水均在土层吸持与腾发交替作用下最终返回大气,由于试验地区多雨期与植被腾发旺盛期重合,毛细阻滞型腾发封顶在该地区具有良好性能。由于毛细阻滞作用,使得上部黏土中存储了更多水分用于后期腾发,从而减少了透水量,当毛细阻滞界面附近土体的体积含水率超过临界含水率时毛细阻滞界面被击穿,击穿是连续强降雨作用的结果。HELP和VADOSE/W均高估了地表径流和透水量、低估了腾发量,因为VADOSE/W能考虑毛细阻滞的机理,所以大致上VADOSE/W的模拟结果比HELP更合理和准确。  相似文献   

14.
Groundwater, the most reliable fresh water source, is used for drinking, domestic and agricultural purposes. Thereby, understanding its behaviour is important for the sustainability of groundwater sources. In this study, relations between the trends of climate parameters [recharge depending on precipitation, temperature and North Atlantic Oscillation Index (NAOI)] and groundwater levels trend were investigated for Torbali Region in Turkey. The human impact that is one of the deterministic components on the groundwater level has been removed from the groundwater level data sets. An increasing trend was observed in the early 1990s, and turning points were determined by using paired t‐test. The trends of the groundwater levels indicate that climate parameters affect groundwater levels in the similar manner. According to the results of the analyses, it is revealed that there is a similar linear variation that is strong and inverse between the trends of NAOI and meteorological indicator (temperature and recharge) and groundwater level.  相似文献   

15.
This study investigates the response of water resources regarding the climate and land‐cover changes in a humid subtropical watershed during the period 1970–2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed. Temperature had a lower increase trend, and precipitation showed definite increasing trend compared to previous studies. The main trend of land‐cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Hydrologic responses to climate and land‐cover changes resulted in increases of surface run‐off (15.0%), soil water content (2.7%), evapotranspiration (20.1%) and a decrease in groundwater discharge (9.2%). We found that surface run‐off is relatively stable with precipitation, whereas groundwater discharge and soil water content are sensitive to changes in land cover, especially land cover brought about by human intervention.  相似文献   

16.
The 40-year long period of heavy industrialization in Central Europe (1950-1990) was accompanied by burning of arsenic-rich lignite in thermal power plants, and accumulation of anthropogenic arsenic in forest soils. There are fears that retreating acidification may lead to arsenic mobilization into drinking water, caused by competitive ligand exchange. We present monthly arsenic concentrations in surface runoff from 12 headwater catchments in the Czech Republic for a period of 13 years (1996-2008). The studied area was characterized by a north-south gradient of decreasing pollution. Acidification, caused mainly by SOx and NOx emissions from power plants, has been retreating since 1987. Between 1996 and 2003, maximum arsenic concentrations in runoff did not change, and were < 1 ppb in the rural south and < 2 ppb in the industrial north. During the subsequent two years, 2004-2005, maximum arsenic concentrations in runoff increased, reaching 60% of the drinking water limit (10 ppb). Starting in 2006, maximum arsenic concentrations returned to lower values at most sites. We discuss three possible causes of the recent arsenic concentration maximum in runoff. We rule out retreating acidification and a pulse of high industrial emission rates as possible controls. The pH of runoff has not changed since 1996, and is still too low (< 6.5) at most sites for an As-OH ligand exchange to become significant. Elevated arsenic concentrations in runoff in 2004-2005 may reflect climate change through changing hydrological conditions at some, but not all sites. Dry conditions may result in elevated production of DOC and sulfur oxidation in the soil. Subsequent wet conditions may be accompanied by acidification leading to faster dissolution of arsenic-bearing sulfides, dissolution of arsenic-bearing Fe-oxyhydroxides, and elevated transport of arsenic sorbed on organic matter. Anaerobic domains exist in normally well-aerated upland soils for hours-to-days following precipitation events.  相似文献   

17.
This work focuses on the interaction between human activity in mountainous areas and slope movement hazards. The paper considers the triggering factors and processes of instability in the urbanized area of Les Arcs, an area exploited for mass ski runs and where many debris flows have occurred over the last 40 years. A progressive survey of the geological, geomorphological, hydrological, hydrogeological and climatic contexts is necessary to tackle the complexity of the phenomena. The human impact is considered as well. From the analysis, the geology associated with a specific climate was determined to be the main triggering factor for debris flow hazards. The influence of the glacial and postglacial period on the geomorphological aspects (e.g. steep slopes) and on the mechanical component of the superficial formations is the main factor. Furthermore, an analysis of regional meteorological data over the last 5 decades has emphasized a significant evolution of the climate since the 1960s which resulted in a general increase in temperature, rainfall (with seasonal variations) and the occurrence of extreme weather events, with long term implications for erosion and on water balance. This seems to be exacerbated by recent human activities which have significantly changed the natural environment: deforestation, changes in vegetation, the development of impervious surfaces such as roofs, roads and car parks, the creation of ski runs and the intensive exploitation of the catchment, all of which may have an influence on runoff and erosion affecting the natural surface structure. These changes and their effects on such factors as runoff and erosion have been reviewed and analyzed. In particular, the effects on hydrology have been highlighted by a hydrological modeling created using PCRaster Environmental Software. The hydrology of the Ravoire torrent before the creation of the ski resort was compared with the present configuration of the catchment. The annual water balance model shows that the ski resort generates a significant increase in the river flow compared to that before the change in land use. The parametric analyses undertaken revealed that the deforestation, the development of ski slopes and impervious areas are responsible for the reduction in infiltration inducing runoff. The maximum increase in water flow occurs during periods of natural high water flow (during snow melt) when the risk of debris flows is naturally high. For the last 20 years, this phenomenon has been amplified by the increasing production of artificial snow on the ski runs. Finally, a complementary model was created to consider the effects over a short time scale. The results of this rain event model emphasize the change in the hydrological response of the rivers after rainfall as a consequence of the change in land use. In particular this indicated a rise in the peak flow towards the resort, which may activate erosive processes above the debris flow source areas.   相似文献   

18.
《国际自然能源杂志》2012,33(1):105-111
ABSTRACT

Recently, desiccant cooling systems are well thought of as a competent method for controlling the water content in the air. A solar flat-plate collector has been used as it decreases the dependency on non-renewable resources. Solar-aided liquid desiccant systems have been used to reduce the dependency of air-conditioning systems on non-renewable sources of energy. Manipal’s humid and searing climate provides certain benefits in setting up such a system. The suggested system has reliability and equipment life and also takes complete advantage of the available solar energy for the renewal of the liquid desiccant. TRNSYS simulation is used to predict the efficiency and feasibility of the system. The temperature and energy-load variations were successfully obtained. An effective simulation was developed whereby the solar air conditioning of a room was indicated.  相似文献   

19.
This article presents empirical evidence linking recent fluctuations in regional temperatures to enhanced ozone formation within the country's 50 largest metropolitan regions. The results of an analysis of regional climate and ozone formation during the 1990s indicate that annual violations of the national ozone standard were more strongly associated with regional temperatures than with the emissions of regulated ozone precursors from mobile and stationary sources. Based on the results of this analysis, I argue that the air quality management strategies outlined in the Clean Air Act may be insufficient to control ozone formation due to ongoing and unanticipated changes in global and regional climate. I further argue that the emergence of urban heat as a significant air “pollutant” demands a strategic response from the field of urban planning. The article concludes with a discussion of the linkages between urban form and regional temperature and outlines a set of design strategies that have proven successful in mitigating urban heat production.  相似文献   

20.
This paper addresses the issues of scale and appropriate model complexity for large-scale hydrological models. A grid-based hydrological model, which employs the UK Meteorological Office Rainfall and Evaporation Calculation System, is applied to the Severn and Thames catchments using a grid scale of 40 km, and is shown to reproduce the observed mean annual runoff over a 10-year period to within 6% with no prior calibration. The variation in the model performance is strongly correlated with the linearity of the annual rainfall/runoff relationship and a climate index. At the monthly scale, runoff routing becomes significant, and the introduction of a two-parameter routeing algorithm significantly improves the monthly runoff simulations giving efficiencies of 90% and 88% for the Severn and Thames respectively. The results provide guidance to climate modellers looking for efficient and robust land-surface parameterizations, and indicate the potential application of such a modelling scheme to water resource managers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号