首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study investigates the effect of 4ZnO–B2O3 on the sintering behavior, dielectric properties, and microstructures of Ba0.6Sr0.4TiO3 (BST) ceramics. These ceramics were sintered in air at temperatures ranging from 900°C to 1080°C. BST ceramics with 4ZnO–B2O3 addition can be sintered to a theoretical density higher than 95% at 1050°C. A secondary phase (Ba2ZnTi5O13) is produced in the BST ceramics during 4ZnO–B2O3 addition. Compositional analysis using TEM-EDX of the BST ceramics with 3 wt% 4ZnO–B2O3 revealed that the Zn ion is generally located at the triple points. This result indicates that BaO, TiO2, and ZnO form a liquid phase that acts as a secondary phase at the lower sintering temperatures. The amount of secondary phase was observed to increase as the amount of 4ZnO–B2O3 additives increased. In addition, the original Ba0.6Sr0.4TiO3 phase was shifted to the Ba0.5Sr0.5TiO3 phase by the addition of 3 wt% 4ZnO–B2O3 at 1050°C. The Ba0.6Sr0.4TiO3 ceramic with 2 wt% 4ZnO–B2O3 sintered at 1050°C in air for 2 h exhibited dielectric properties of ɛr=1883 and dissipation loss=0.36%. Moreover, BST with 1 wt% 4ZnO–B2O3 addition sintered at 1080°C exhibits dielectric properties of ɛr=2330, dissipation loss=0.29%, and bulk density >95% of theoretical density.  相似文献   

2.
《Ceramics International》2021,47(19):27545-27552
B2O3 and CuO were codoped into 6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–4(Na0.5Nd0.5)TiO3 (abbreviated as 6NZCT–4NNT) ceramics as sintering aids. The influences of the sintering aids on the sintering characteristics, microstructure and microwave dielectric properties of the 6NZCT–4NNT ceramics were systematically investigated as a function of the proportion of B2O3 and CuO. Codoping could greatly reduce the sintering temperature from 1410 °C to 1150 °C, indicating that B2O3/CuO are good sintering aids for 6NZCT–4NNT ceramics. The B2O3/CuO sintering aids had no significant impact on the phase purity of the investigated ceramics, even though a solid solution was formed due to Cu2+ ion substitution. However, they had evident influences on the surface morphology and grain size. The average grain size was enlarged with increasing amounts of CuO in the B2O3/CuO sintering aids. Remarkable deterioration of the microwave dielectric properties for 6NZCT-4NNT ceramics was not observed when codoping an appropriate amount of B2O3 and CuO. The 6NZCT–4NNT ceramics codoped with 2.0 mol% B2O3 and 2.0 mol% CuO sintered at 1150 °C for 3 h exhibited a homogeneous microstructure and promising microwave dielectric properties: an appropriate dielectric constant (εr = 49.37), a high quality factor (QF = 47,295 GHz), and a near-zero temperature coefficient of resonant frequency (TCF = +0.9 ppm/°C).  相似文献   

3.
(1 − x)Ba0.4Sr0.6TiO3/xCaCu3Ti4O12 composite ceramics were prepared by spark plasma sintering. Sintering behavior, microstructures and dielectric properties of the composite ceramics were investigated by XRD, SEM, EDS and dielectric spectrometer. Dense composite ceramics consisting of Ba0.4Sr0.6TiO3 phase and CaCu3Ti4O12 phase were prepared at 800 °C for 0 min. The dielectric loss of the composite ceramic decreased with increasing amount of Ba0.4Sr0.6TiO3, and the high dielectric constant were retained. Moreover, the better temperature stability of dielectric constant was obtained. These improvements of dielectric characteristics have great scientific significance for potential application.  相似文献   

4.
The effects of B2O3/CuO and BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of Ba2Ti9O20 ceramics were investigated. The B2O3 added Ba2Ti9O20 ceramics were not able to be sintered below 1000 °C. However, when both CuO and B2O3 were added, they were sintered below 900 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the Ba2Ti9O20 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the Ba2Ti9O20 ceramics. Good microwave dielectric properties of Qxf = 16,000 GHz, ɛr = 36.0 and τf = 9.11 ppm/°C were obtained for the Ba2Ti9O20 ceramics containing 10.0 mol% BaCu(B2O5) sintered at 875 °C for 2 h.  相似文献   

5.
A series of 0.9625MgTiO3-0.0375(Ca0.5Sr0.5)TiO3 composite ceramics added with different amounts of B2O3 (1-5 wt%) were prepared via the solid state sintering method using the pre-synthesized raw MgTiO3 and (Ca0.5Sr0.5)TiO3 powders by molten-salt reaction. The sintering temperature of 0.9625MgTiO3-0.0375(Ca0.5Sr0.5)TiO3 composite ceramics can be reduced from 1275°C to 1175°C due to the liquid phase sintering effect of B2O3. When the adding amount of B2O3 was more than 2 wt%, a new phase MgTi2O5 could be detected by X-ray diffraction, which would substantially degrade the dielectric properties of the obtained ceramics. Resultantly, the quality factor (Q·f) and dielectric constant (εr) of the samples increase first and decrease later with increasing addition amount of B2O3. In addition, the temperature coefficient of resonant frequency (τf) progressively increases with increasing content of B2O3. By sintering at 1175°C for 4 hours, the obtained 0.9625MgTiO3-0.0375Ca0.5Sr0.5TiO3 composite ceramics with 2 wt% B2O3 possess the optimal microwave dielectric properties of εr = 18.9, Q·f = 57 000 GHz and τf = −1.2 ppm/°C.  相似文献   

6.
《Ceramics International》2019,45(11):14263-14269
Stimulated by the outstanding colossal permittivity behavior achieved in trivalent and pentavalent cations co-doped rutile TiO2 ceramics, the co-doping effects on the dielectric behavior of Ba0.4Sr0.6TiO3 ceramics were further explored. In this work, (Al + Nb) co-doped Ba0.4Sr0.6TiO3 ceramics were synthesized via a standard solid state ceramic route. The structural evolution was analyzed using X-ray diffraction patterns and Raman spectra. Dense microstructures with no apparent change of grain morphology were observed from the scanning electron microscopy. A huge enhancement of dielectric permittivity was obtained with 1 mol% (Al + Nb) doping and excellent dielectric performances (εr ∼ 20,000, tanδ ∼ 0.06 at 1 kHz) were achieved after further heat treatment. The formation of electron pinned defect dipoles localized in grains may account for the optimization of dielectric behaviors and the corresponding chemical valence states were confirmed from the XPS results.  相似文献   

7.
The low sintering temperature and the good dielectric properties such as high dielectric constant (ɛr), high quality factor (Q × f) and small temperature coefficient of resonant frequency (τf) are required for the application of chip passive components in the wireless communication technologies. In the present study, the sintering behaviors and dielectric properties of Ba3Ti4Nb4O21 ceramics were investigated as a function of B2O3–CuO content. Ba3Ti4Nb4O21 ceramics with B2O3 or CuO addition could be sintered above 1100 °C. However, the additions of both B2O3 and CuO successfully reduced the sintering temperature of Ba3Ti4Nb4O21 ceramics from 1350 to 900 °C without detriment to the microwave dielectric properties. From the X-ray diffraction (XRD) studies, the sintering behaviors and the microwave dielectric properties of low-fired Ba3Ti4Nb4O21 ceramics were examined and discussed in the formation of the secondary phases. The Ba3Ti4Nb4O21 sample with 1 wt% B2O3 and 3 wt% CuO addition, sintered at 900 °C for 2 h, had the good dielectric properties: ɛr = 65, Q × f = 16,000 GHz and τf = 101 ppm/°C.  相似文献   

8.
《Ceramics International》2022,48(5):6819-6825
The influence of grain size on the dielectric properties of Sr0.6Ba0.4Nb2O6 (SBN60) ceramics with a tetragonal tungsten bronze structure was examined. The conventional and two-step sintering procedures were used to fabricate dense and phase-pure SBN60 ceramics with grain sizes ranging from 2.2 μm to 17.3 μm. In the temperature dependence of the dielectric permittivity, all samples showed a relaxor-like broad dielectric peak with a maximum at around 60 °C. The maximum dielectric permittivity and dielectric maximum temperature of the SBN ceramics were found to be less dependent on the grain size. The reason for the grain-size-insensitive dielectric properties of the SBN60 ceramics is discussed based on the analysis of the dielectric properties and Raman spectra.  相似文献   

9.
A study of phase transition, microstructure, and dielectric properties of Ba0.7Sr0.3Ti1–xNixO3 (BSTN) ceramics prepared by slow‐injection solgel technique with x ranging from 0 to 1 mol% is reported in this article. The as‐prepared BSTN material was calcined at 800 and 1000°C and subsequently sintered at 1100 and 1200°C, respectively. The optimized condition was found to be Ba0.7Sr0.3TiO3 doped with 1 mol% nickel calcined at 1000°C and sintered at 1200°C having the lowest dielectric loss of 0.02 with a dielectric constant of 1603 which was measured at a frequency of 1 kHz at room temperature.  相似文献   

10.
Sol–gel derived Ba0.80Sr0.20TiO3 (BST) and Pb0.82La0.18TiO3 (PLT) powders and a low-melting PbO–B2O3 glass powder were mixed to prepare paste. The composite thick films (∼40 μm) were fabricated by screen-printing the paste onto the Al2O3 substrates with screen-printed silver bottom electrode and then sintered at the low temperature 650–800 °C, respectively. X-ray diffraction (XRD), transmission microscope (TEM), scanning electron microscope (SEM) and an impedance analyzer were used to analyze the structures, microstructures and dielectric properties of the powders and the composite thick films. The results show that the composite thick films containing sol–gel derived Ba0.80Sr0.20TiO3 and Pb0.82La0.18TiO3 perovskite phases have been fabricated by using the PbO–B2O3 glass as a sintering aid. Compared to conventional sintering at ≥1200 °C, high densification of the composite thick films is achieved at temperature as low as 800 °C by the “wetting” and “infiltration” of the liquid phase on the particles. The homogenization of the BST and PLT perovskite phase in the composite thick films is evitable by controlling the sintering temperature and time. The formation of the small amount of pyrochlore phase in composite thick films sintered at 800 °C is resulted from both the volatilization of PbO and the interaction between the PLT and PbO–B2O3 glass. The relative dielectric properties of the composite thick films exhibit good temperature-stable behavior, and the variation of the relative dielectric constant is less than 10% in the temperature range 0–300 °C.  相似文献   

11.
(Ba0.6Sr0.4)(Ti1−xZrx)O3 (0.05  x  0.3) ferroelectric materials have cubic perovskite structure and show paraelectric properties at room temperature. Curie point shifted to a negative value as increasing Zr content in (Ba0.6Sr0.4)(Ti1−xZrx)O3 system. When Zr substituted 0.1 mol, the dielectric constant, dielectric loss, tunability, Curie point and FOM were 4500, 0.0005, 63%, −1.6 °C and 1260, respectively. This composition shows excellent microwave dielectric properties than those of (Ba0.6Sr0.4)TiO3 ferroelectrics, which are limelight materials for tunable devices such as varactors, phase shifters and frequency agile filters, etc.  相似文献   

12.
《Ceramics International》2022,48(8):10713-10720
Ba2Ti9O20 (short for B2T9) ceramics doped with 0.9 mol% MnO2 and y mol% WO3 were prepared by solid-state reaction. The influence of sintering temperature, content of WO3 dopant and the molar ratio x of TiO2: BaCO3 on crystal structure, microstructures as well as microwave dielectric properties of B2T9 ceramics was systematically investigated. The major phase of all samples is B2T9, and the minor phase is BaWO4, respectively. The content of impurity TiO2 alternates with the variation of compositions and sintering temperature, which also leads to different microwave dielectric properties. With the continuous increase of the sintering temperature, the B2T9 phase grains gradually grow larger and transform from rod grains to plate-like grains. The enlargement and flattening of grains also result in the decrease of compactness and deterioration of microwave dielectric properties. It is found that B2T9 ceramics possess better performance when the sintering temperature is 1340°C, which is related to lower TiO2 content, BaWO4, B2T9 grain size, aspect ratio of B2T9 phase and high compactness. When x = 4 and y = 0.2, the relative dielectric constant, quality factor and the temperature coefficient of resonant frequency are 38, 23758 and 7 ppm/°C, respectively.  相似文献   

13.
(1 ? x)Ba0.4Sr0.6TiO3xBaMoO4 ceramics with x = 5, 10, 20, 30, 40 and 60 wt% were prepared by traditional solid-state reaction method. Two crystalline phases, a cubic perovskite structure Ba0.4Sr0.6TiO3 (BST) and a tetragonal scheelite structure BaMoO4 (BM) were obtained by XRD analysis. The microwave dielectric properties of Ba0.4Sr0.6TiO3–BaMoO4 composite ceramics were investigated systematically. The results show that the composite ceramics exhibited promising microwave properties. The dielectric constant can be adjusted in the range from 900 to 78, while maintaining relatively high tunability from 27.3% to 12.8% under a direct current electric field of 60 kV/cm and Q values from 619 to 67 in the gigahertz frequency region.  相似文献   

14.
《Ceramics International》2023,49(20):32503-32509
Ba0.5Sr0.5TiO3–ZnAl2O4 composite ceramics were prepared by double sintering and conventional sintering. The results show that the double sintering can effectively reduce the ion diffusion between Ba0.5Sr0.5TiO3 and ZnAl2O4 phases. The double sintered samples exhibit higher density and more uniform grain size distribution than the conventional sintered samples. The dielectric permittivity of double sintered samples is lower than that of conventional sintered samples. Impedance spectrum analysis shows that the oxygen vacancy content and grain boundary resistance of the double sintered samples is lower than that of the conventional sintered samples, which indicates that the Q value of the double sintered samples is higher than that of the conventional sintered samples. The optimum dielectric tunability and Q value of double sintered 60 wt%Ba0.5Sr0.5TiO3-40 wt%ZnAl2O4 sample are 23.4% at 30 kV/cm and 276 at 2.257 GHz, respectively. Therefore, double sintering is a strategy that can effectively adjust the dielectric tunability and Q value of BST-ZA composite ceramics.  相似文献   

15.
In this study, a novel spinel solid solution ceramic of 0.4LiFe5O8–0.6Li2MgTi3O8 (0.4LFO–0.6LMT) has been developed and investigated. It is found that the 40 mol% LiFe5O8 and 60 mol% Li2MgTi3O8 are fully soluble in each other and a disordered spinel phase is formed. The ceramic sample sintered at 1050°C/2 h exhibits both good magnetic and dielectric properties in the frequency range 1–10 MHz, with a permeability between 29.9~14.1 and magnetic loss tangent between 0.12~0.67, permittivity between 16.92~16.94 and dielectric loss tangent between 5.9 × 10?3–2.3 × 10?2. The sample also has good microwave dielectric properties with a relative permittivity of 16.1, a high quality factor (× f) ~28 500 GHz (at 7.8 GHz). Furthermore, 3 wt% H3BO3–CuO (BCu) addition can effectively lower the sintering temperature to 925°C and does not degrade the magnetodielectric properties. The chemical compatibility with silver electrode indicates that this kind of ceramics is a good candidate for the low‐temperature cofired ceramic (LTCC) application.  相似文献   

16.
The influence of B2O3–CuO addition on the sintering behavior, phase composition, microstructure and microwave dielectric properties of BiSbO4 ceramic have been investigated. The BiSbO4 ceramics can be well densified to approach above 95% theoretical density in the sintering temperature range from 840 to 960 °C as the addition amount of B2O3–CuO increases from 0.6 to 1.2 wt.%. Sintered ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microwave permittivity ?r saturated at 19–20 and Qf values varied between 33,000 and 46,000 GHz while temperature coefficient of resonant frequency shifting between ?70 and ?60 ppm/°C at sintering temperature around 930 °C. Lowering sintering temperature of BiSbO4 ceramics makes it possible for application in low temperature co-fired ceramic technology.  相似文献   

17.
The acicular Sr0.39Ba0.48K0.32Nb2O6 single crystal particles were first prepared by the reaction of SrCO3, BaCO3 and Nb2O5 in molten K2SO4 at 1300 °C for 3 h. By using these single crystal particles as seeds and V2O5 as additives, textured Sr0.4Ba0.6Nb2O6 (SBN40) ceramics were obtained. The effect of V2O5 on sintering behaviour, microstructure and dielectric properties of textured SBN40 ceramics was investigated. The experimental results show that the addition of V2O5 can accelerate the densification rate of the material and encourage the texture of SBN40 ceramics, which further improves the anisotropy in dielectric properties between different directions of textured SBN40 ceramics.  相似文献   

18.
Dense fine-grained Ba0.6Sr0.4TiO3 ceramics with submicronic grains sizes (GS) have been prepared using nanopowders synthesized via sol-gel route and consolidated by Spark Plasma Sintering (SPS). By changing SPS parameters, the GS was reduced from 214 nm to 74 nm. Diffuse ferroelectric-paraelectric phase transitions and low values of dielectric permittivity (<1000) at the Curie temperature (TC ∼280 K) were revealed by Impedance Spectroscopy in all sintered ceramics. The GS reduction from submicron to nanoscale range reflects in a gradually diminishment of dielectric constant, tunability, polarisation and storage energy properties. Raman spectroscopy investigations pointed out the presence of polar nanoclusters above the TC. The short-range polar order is affected by the GS decrease, but becomes more thermally stable. The observed properties of Ba0.6Sr0.4TiO3 nanostructured ceramics are interpreted by considering the interplay between the GS reduction, the role of low-permittivity grain boundaries and the diffuse character of the ferroelectric-to-paraelectric transformation.  相似文献   

19.
Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with SrO–B2O3–SiO2 glass additives were prepared via the solid state reaction route. The effects of glass contents on the sintering behavior, dielectric properties, microstructures, and energy storage properties of BSZT ceramics were investigated. Dielectric breakdown strength of 22.4 kV/mm was achieved for BSZT ceramics with 20 wt% glass addition. Dielectric relaxation behavior was observed in dielectric loss versus temperature plots. In order to investigate the mechanism of dielectric breakdown performance, the relationship between dielectric breakdown strength and grain boundary barrier was studied by the measurements of breakdown strength and activation energy. A discharged energy density of 0.45 J/cm3 with an energy efficiency of 88.2% was achieved for BSZT ceramics with 5 wt% glass addition.  相似文献   

20.
《Ceramics International》2016,42(16):18333-18337
The effect of CuO/MnO additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 3ZrO2-3TiO2-ZnNb2O6 (3Z-3T-ZN) ceramics prepared by conventional solid-state route were systematically investigated. CuO/MnO doped ceramics exhibited a main phase of α-PbO2-structured ZrTi2O6 and a secondary phase of rutile TiO2. SEM results showed that the grain size of MnO doped ceramics became larger with increasing amount of dopants. The presence of CuO/MnO additives effectively reduced the sintering temperature of 3Z-3T-ZN ceramics to 1220 °C. MnO doped into ceramics could enhance the Q×f values significantly. The 0.5 wt% CuO doped 3Z-3T-ZN ceramics with 0.5 wt% of MnO, sintered at 1220 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 41.02, a Q×f value of 44,230 GHz (at 5.2 GHz), and τf value of +2.32 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号