首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of Ti3SiC2 by pressureless reactive sintering of Ti/SiC/C mixtures under an Ar atmosphere has been studied using in situ neutron diffraction. The intermediate phases TiCx and Ti5Si3Cx (x≤ 1) form first at ∼800–1400°C. These phases are consumed in the formation of Ti3SiC2, at ∼1500°C. After sintering, Ti5Si3Cx disappears but an amount of TiCx remains in the sample primarily as a surface layer. The studies appear to support a suggestion that the intermediate phases react to form Ti3SiC2 through a diffusion-controlled process. Prolonged stepwise heating under argon in some experiments resulted in decomposition of Ti3SiC2 above ∼1400°C and significant disproportionation of the sample.  相似文献   

2.
《Ceramics International》2016,42(8):9972-9980
Ti3SiC2/Cu composites with different contents of Cu were fabricated by mechanical alloying and spark plasma sintering method. The phase composition and structure of the composites were analyzed by X-ray diffractometry and scanning electron microscopy equipped with energy dispersive spectroscopy. The mechanical and tribological properties of Ti3SiC2/Cu composites were tested and analyzed compared with monolithic Ti3SiC2 in details. The results show that the Cu leads to the decomposition of Ti3SiC2 to produce TiCx, Ti5Si3Cy, Cu3Si, and TiSi2Cz. The friction coefficient and wear rate of the composites are lower than that of monolithic Ti3SiC2, which is ascribed to the fixing effect of hard TiCx, Ti5Si3Cy, and Cu3Si to inhibit the abrasive friction and wear. However, at elevated temperatures (ranging from room temperature to 600 °C) the friction and wear of the composites are higher than those at room temperature. Plastic flowing and tribo-oxidation wear accompanied by material transference contribute to the increased friction and wear at elevated temperatures.  相似文献   

3.
Wetting behaviour of a Cu/Ti3SiC2 system was investigated by the sessile drop technique under a vacuum atmosphere. Contact angles between Cu and Ti3SiC2 changed from 95 to 15° as temperatures increased from 1089 to 1270°C. Two distinct reaction layers consisting of different contents of Cu, TiCx, Ti3SiC2 and CuxSiy intermetallics were formed at the interface of Cu and Ti3SiC2. The formation of the interface layers contributes to the improvement of the wettability of the system. The dissolution of Si from theTi3SiC2 into the molten Cu at high temperature plays a dominant role in the wetting behaviour of Cu/Ti3SiC2 systems.  相似文献   

4.
Coatings with composition close to Ti3SiC2 were obtained on SiC substrates from Ti and Si powders with the molten NaCl method. In this work, the growth of coatings by reaction in the salt between monolithic SiC substrates and titanium powder is obtained between 1000 and 1200 °C. At 1000 °C, a coating of 8 µm thickness is formed in 10 h whereas a thin coating of 0.5 µm has been grown in 2 h. A lack in silicon was first found in the coatings prepared at 1100 and 1200 °C. For these temperatures, the addition of silicon powder in the melt had a favorable effect on the final composition, which is found very close to the composition of Ti3SiC2. The reaction mechanism implies the formation of TiCx layers in direct contact with the SiC substrate and the presence of more or less important quantities of Ti3SiC2 and Ti5Si3Cx in the upper layers.  相似文献   

5.
《Ceramics International》2022,48(4):4484-4496
Ti3SiC2 ceramic and SUS430 stainless steel (SS) were successfully joined by a solid diffusion bonding technique using Ni interlayers. Diffusion bonding was performed in the temperature range of 850 °C–1100 °C under vacuum. The interfacial reaction phase, morphology evolution, growth kinetics and tensile strength were systematically investigated. In all cases, the inter-diffusion and reaction between Ti3SiC2 and SS can be effectively prevented by Ni foil, and the good transition in the joint benefit to the sound joining. The interface in the joints adjacent to SS matrix was composed of γ solid solution and a small amount of σ intermetallic compound. The compounds in the Ni/Ti3SiC2 interface was Ni/Ni(Si)/Ni31Si12 + Ni16Ti6Si7 + Ti3SiC2 + TiCx/Ti2Ni + Ti3SiC2 + TiCx/Ti3SiC2, which formed by the inter-diffusion and chemical reactions between Si and Ni atoms. The diffusion mechanism and reaction mechanism were interrelated, and decided the width of each reaction zones. Furthermore, the diffusion activation energy was 113 kJ/mol. The tensile strength increases with increasing the bonding temperature. The minimum and maximum strength of 32.3 MPa and 88.8 MPa were obtained from SUS430/Ni/Ti3SiC2 joints, which bonding experiments were carried out at 850 °C and 1100 °C, respectively.  相似文献   

6.
The radiation damage response of Ti3SiC2 heated from 120°C to 850°C during 700 keV Si+ irradiation has been investigated. The samples were analyzed using glancing incidence X‐ray diffraction, Rutherford backscattering spectrometry, Raman spectroscopy, and scanning electron microscopy. For the sample at 120°C, irradiation results in a buildup of a heterogeneous surface and the formation of TiCx. Irradiation at 200°C results in maximum microstrain, a maximum in the c lattice parameter, and the appearance of a β phase in addition to the normal α phase of Ti3SiC2. A minimum in the observed damage level near the surface was seen for irradiation at a sample temperature of 300°C but the damaged phase increases at higher temperatures. Differences between the present work and a previous C irradiation study have been ascribed to the enhanced Si defect transport at low temperatures.  相似文献   

7.
In this paper, we investigated the reaction path to synthesize Ti3SiC2 by the in situ hot pressing/solid–liquid reaction method. The effect of different content of Al addition on this process was also examined. Ti3SiC2 mainly formed from the reaction between Ti5Si3Cx, TiCx, TiSi2 and graphite at 1400–1500 °C. As an inescapable impurity in Ti3SiC2, TiCx was removed by addition of small amounts of Al. This was owing to the fact that the addition of a minor quantity of Al increased the amount of “effective TiCx” and relatively decreased that of “invalid TiCx”. Further increasing Al content, however, resulted in the presence of TiCx again in the final product. This was due to the fact when significant amounts of Al was added, the stoichiometric ratio of silicon and graphite has been deviated from that for Ti3SiC2. More Si and less graphite were needed to prepare a monolithic Ti3Si(Al)C2 solid solution with high Al content.  相似文献   

8.
Based on the structure characteristic of Ti3SiC2 and the easy formation of Ti3Si1−xAlxC2 solid solution, a transient liquid phase (TLP) bonding method was used for bonding layered ternary Ti3SiC2 ceramic via Al interlayer. Joining was performed at 1100–1500 °C for 120 min under a 5 MPa load in Ar atmosphere. SEM and XRD analyses revealed that Ti3Si(Al)C2 solid solution rather than intermetallic compounds formed at the interface. The mechanism of bonding is attributed to aluminum diffusing into the Ti3SiC2. The strength of joints was evaluated by three point bending test. The maximum flexural strength reaches a value of 263 ± 16 MPa, which is about 65% of that of Ti3SiC2; for the sample prepared under the joining condition of 1500 °C for 120 min under 5 MPa. This flexural strength of the joint is sustained up to 1000 °C.  相似文献   

9.
Owing to the good physicochemical compatibility and complementary mechanical properties of Ti3SiC2 and Al2O3, Ti3SiC2/Al2O3 composites are considered as ideal structural materials. However, TiC and TiSi2 typically coexist during the synthesis of Ti3SiC2/Al2O3 composites through an in-situ reaction, which adversely affects the mechanical properties of the resulting composites. In this study, Ti3SiC2/Al2O3 composites were prepared via in-situ hot pressing sintering at 1450 °C. Ge, which was used as a sintering aid, improved the purity and mechanical properties of the Ti3SiC2/Al2O3 composites. This is because Ge replaced some of the Si atoms to compensate the evaporation loss of Si to form Ti3(Si1-xGex)C2, which showed a crystal structure similar to that of Ti3SiC2. Furthermore, the molten Ge accelerated the diffusion reaction of the raw materials, increasing the overall density of the Ti3SiC2/Al2O3 composites. The optimum Ge amount for improving the mechanical properties of the composites was found to be 0.3 mol. The flexural strength, fracture toughness, and microhardness of the composite with the optimum Ge amount were 640.2 MPa, 6.57 MPa m1/2, and 16.21 GPa, respectively. The formation of Ti3(Si1-xGex)C2 was confirmed by carrying out X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy analyses. A model crystal structure of Ti3(Si1-xGex)C2 doped with 0.3 mol Ge was established by calculating the solid solubility of Ge.  相似文献   

10.
Reliable contact-reactive brazed joints of TC4 alloy and Ti3SiC2 ceramic were obtained using a Cu interlayer. The interfacial microstructure of a TC4/Ti3SiC2 joint brazed at 920?°C for 10?min was TC4/Ti2Cu +?α-Ti +?β-Ti/Ti2Cu +?AlCu2Ti +?Ti5Si3/Ti5Si3 +?Ti5Si4/Ti3SiC2. The interfacial microstructure and mechanical properties of TC4/Ti3SiC2 joints brazed at different temperatures were investigated. With increasing temperature, the shear strength of the brazed joints first increased and then decreased. The maximum shear strength was 132?±?8?MPa, and the corresponding fracture occurred along the Ti–Si reaction layer and the Ti3SiC2 substrate adjacent to the Ti–Si reaction layer. The microhardness test also demonstrated that the Ti–Si reaction layer possessed the highest microhardness, 812?±?22 HV. The Ti-Si reaction layer was the weakest part of the brazed joints. To eliminate the Ti-Si reaction layer and improve the mechanical properties of TC4/Ti3SiC2 brazed joints, a 40-μm Ni layer was plated on the surface of the Ti3SiC2 ceramic before brazing. The results showed that the Ti–Si reaction layer that formed adjacent to the Ti3SiC2 ceramic was thin and intermittent. Moreover, the interface between the Ti3SiC2 ceramic and the TC4 alloy became jagged. The shear strength of the TC4/nickel-plated Ti3SiC2 brazed joints improved to 148?±?8?MPa; the corresponding fracture occurred mainly in the Ti3SiC2 ceramic and only a small portion of the fracture occurred in the brazing seam.  相似文献   

11.
《Ceramics International》2023,49(16):26428-26439
Using low-cost and highly reactive bamboo charcoal, Ti and Si elemental powders as starting materials, Ti3SiC2 powder was synthesized via a simple and cost-efficient pressureless sintering technique in argon atmosphere. The influences of synthesis temperature, holding time and Si content on the Ti3SiC2 content of the synthesized products were investigated, and the analysis indicated that the relative content of Ti3SiC2 reached 98.9 wt% with a molar ratio of 3Ti/1.2Si/2.2C at 1400 °C for 1.5 h. The Ti3SiC2 with good crystallinity and homogeneous nanolayered structure was synthesized at lower temperatures due to the high reactivity and high specific surface area of bamboo charcoal. The non-isothermal oxidation behavior showed that Ti3SiC2 powder was stable in air below 540 °C. With the temperature increasing up to 1300 °C, continuous and dense TiO2 and SiO2 oxidation layers were formed on the surface of Ti3SiC2 particles, which conferred good oxidation resistance to Ti3SiC2 powder.  相似文献   

12.
Magnetron sputtering deposition of Mo and Zr and subsequent annealing were conducted with the motivation to modify the surface hardness of Ti3SiC2. For Mo-coated Ti3SiC2, Si diffused outward into the Mo layer and reacted with Mo to form molybdenum silicides in the temperature range of 1000–1100 °C. The MoSi2 layer, however, cracked and easily spalled off. For Zr-coated Ti3SiC2, Si also diffused outward to form Zr–Si intermetallic compounds at 900–1100 °C. The Zr–Si compounds layer had good adhesion with Ti3SiC2 substrate, which resulted in the increased surface hardness.  相似文献   

13.
《Ceramics International》2019,45(13):16564-16568
Sintered polycrystalline diamond (PCD) was prepared via high temperature and high pressure (HTHP) process using Ti3SiC2 and Si as the binder. The effect of decomposition of Ti3SiC2 on comprehensive properties of PCD was investigated at different temperatures. Results show that Si formed liquid phase infiltrated diamond surface at high temperatures to inhibit diamond graphitization and to reduce defects significantly. In addition, strong covalent bond of Si-diamond was generated, which increased the strength of PCD. At suitable temperature, Ti3SiC2 would partially decompose to TiC and SiC with high activity. Strong covalent bond of TiC and SiC also increased relative density and hardness of PCD, and residual Ti3SiC2 enhanced the toughness of PCD. At 1500 °C, the hardness and toughness of PCD reached 54.35 GPa and 8.6 MPa m1/2, respectively, which are 19% and 82%, respectively, higher than PCD sintered at 1350 °C.  相似文献   

14.
《Ceramics International》2015,41(6):7626-7631
Ti3Si(1−x)AlxC2 (x=0–1) quarternary MAX phase materials were prepared by spark plasma sintering of TiC, Ti, Si and Al powder mixtures at 1200 °C. Effect of Al addition on lattice parameters, density and hardness were investigated. Impurities are limited to binary phases of TiC and Ti5Si3. No multinary compound other than Ti3Si(1−x)AlxC2 can be detected. TiC exists as impurity in all samples and trace amount of Ti5Si3 can be detected in Samples x=0.1–0.6. Oxidation of Al cannot be avoided although all sintering were performed under vacuum and trace amount of Al2O3 can be found in all samples with Al addition. Experimental results show that the lattice parameters a and c increase linearly with increasing Al content for x=0–1. The lattice variations are strongly anisotropic and follow Vegard׳s law. Both density and hardness decrease as Al content increases. The linear variation of lattice parameters, d spacings of crystalline faces and density against Al concentration suggest that continuous solid solutions of Ti3Si(1−x)AlxC2 (x=0–1) may have been formed between Ti3SiC2 and Ti3AlC2.  相似文献   

15.
Nanolaminate Ti3SiC2 was synthesized from a mixture of TiCx (x = 0.67)/Si powder by hot pressing to increase machinability. Ti3SiC2 was synthesized at temperatures of 1360 °C and 1420 °C for 90 min under a pressure of 25 MPa. The X-ray diffraction results showed that while mainly Ti3SiC2 with some unreacted TiCx were detected in the synthesized samples at 1360 °C, no phases except Ti3SiC2 phases remained in the synthesized samples at 1420 °C. The cutting resistance of Ti3SiC2 was measured in terms of the principle, feed, and thrust forces and was compared with that of middle-carbon steel, SM45C. The values of the principal force of the synthesized Ti3SiC2 were lower than those of SM45C. After machining, the roughness of the Ti3SiC2 was lower than those of SM45C; however, the damage to the tool bit used for the machining of SM45C was less than the damage to those used for the machining of the Ti3SiC2.  相似文献   

16.
《应用陶瓷进展》2013,112(3):162-166
Abstract

3Ti–Si–2C–0·2Al mixture powders were used to fabricate high purity Ti3SiC2 ceramic through mechanical alloying (MA) and spark plasma sintering (SPS). The effect of ball milling time on the fabrication of Ti3SiC2 by SPS was also investigated. The results showed that the mixed powders were obviously refined after the MA of 5 h. After milling of 10 h, the mixed powders containing TiC, Ti3SiC2 were synthesised by a mechanically induced self-propagating reaction. After further milling to 20 h, the yield powders were refined. Ball milling time had a remarkable effect on SPS fabrication of Ti3SiC2. A shorter milling time of 5 h only helped to increase the Ti3SiC2 content in the sintered bulk. The samples subjected to the MA treatment of 20 h had a fine and dense organisation. Ball milling of 10 h was most beneficial for fabricating dense and high purity Ti3SiC2. Ti3SiC2 bulk with a purity of 96 wt-% was obtained by MA for 10 h and subsequent SPS at 850°C. When sintered at 1100°C, Ti3SiC2 bulk with a purity of 99·3 wt-% and a relative density of 98·9% was obtained.  相似文献   

17.
Ti–Si–C (TSC) composite coatings were fabricated by plasma spraying using Ti/Si/graphite agglomerates as feedstock. Ar-annealing was carried out to reduce the intrinsic defects and increase the performance of the as-sprayed TSC coating. The effects of the annealing temperature (500–900 °C) on the microstructures and mechanical performances of the TSC coatings were investigated. All TSC coatings consisted of TiC, Ti5Si3 and MAX phase Ti3SiC2. With the increase in temperature (>700 °C), TiC became predominant, while the Ti3SiC2 phase content increased, which was accompanied by a decrease in Ti5Si3 content. The high -temperature annealing (>700 °C) led to a homogenous microstructure with a relatively low porosity and increased number of micro-cracks. Notably, the hardness and fracture toughness of the TSC coating were simultaneously increased after the annealing, from 1164 HV to 1.96 MPa m1/2 to 1560 HV and 3.45 MPa m1/2, respectively. The formation of nanoscale TiC and Ti5Si3 with a network distribution, uniform and dense microstructure, and toughening effects of Ti3SiC2 and micro-cracks provided the high mechanical performances of the TSC composite coatings.  相似文献   

18.
《应用陶瓷进展》2013,112(4):208-213
Abstract

Combustion synthesis of Ti3SiC2 was carried out in air with Si3N4, SiC, and Si as Si sources respectively, and the effect of Si source on the phase composition of the products was investigated. With Si3N4 as Si source, the major product was TiCxN1?x and no Ti3SiC2 was synthesised. When SiC and Si were used, Ti3SiC2 was synthesised. Such effect of Si source is thought to be connected with the formation mechanism of Ti3SiC2, where the presence of a Ti–Si melt is required. The combustion synthesis was also performed under high gravity condition instead of common gravity. The apparent density of the product prepared under high gravity was ~60% higher than that obtained under normal gravity. It is proposed that, the high gravity can facilitate the permeation of Ti–Si melt and enlarge the interface between the melt and carbide phases, which is helpful for the formation of Ti3SiC2.  相似文献   

19.
Polycrystalline bulk samples of (Ti1-yMey)3SiC2, where Me=Fe or V and y=0.01 to 0.1, were fabricated by reactive hot isostatic pressing of a mixture of Ti, C (graphite), SiC and Fe or V at 1450°C for 4 h under a pressure of 60 MPa. X-ray diffraction and scanning electron microscopy of the fully dense samples have shown that small amounts of Fe and V interfere with the reaction between Ti, C and SiC leading to the presence of SiC, TiCx, as well as different Fe and V-containing phases in the final microstructures. The presence of these impurity phases also reduces the temperature at which Ti3SiC2 decomposes. The decomposition is manifested by the formation of a network of pores when the samples are annealed at 1600°C, a temperature at which pure Ti3SiC2 is thermally stable. The concentration threshold for this decomposition is as low as 1 at%.  相似文献   

20.
《Ceramics International》2020,46(9):12948-12954
Ti–Si–C–Mo composite coatings were fabricated by plasma spraying using Ti, Si, graphite and Mo powders. The effect of Mo on microstructure and tribological performance of the Ti–Si–C coatings were investigated. The results showed that the Ti–Si–C coating consisted of TiC, Ti3SiC2, Ti5Si3, and residual graphite. The Ti–Si–C–Mo coatings consisted of TiC, Ti3SiC2, Ti5Si3, residual graphite, Mo and Mo5Si3 phases. With increasing Mo contents, the fractions of Mo and Mo5Si3 phases increased, and the fractions of Ti3SiC2 and Ti5Si3 phases decreased. All the coatings existed a typical lamellar structure. The addition of Mo enhanced the hardness and fracture toughness of Ti–Si–C coating by 16% and 52%, respectively. The coating porosity decreased by 57.6%. The wear resistance of the Ti–Si–C coating was also improved and the mass loss decreased by 83%. The wear mechanism of the Ti–Si–C–Mo coatings was the combination of abrasive wear, adhesive wear, and tribo-oxidation wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号