首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In industrial high‐intensity discharge lamps, cracks and delaminations occasionally develop at the interface between SiO2 and the Mo foil in the seal. Here, functionally graded SiO2‐Mo materials for use in these lamps were fabricated by uniaxial compression casting and pressureless sintering. Consequently, vertical cracks developed across the sintered body layers, and interfacial cracks developed between the 100 wt% SiO2 and 90 wt% SiO2‐Mo layers. Therefore, the effects of residual stress, difference in the coefficient of thermal expansion (CTE), and difference in the volume shrinkage on these cracks were investigated. Vertical cracks were suppressed when residual stress was relaxed by annealing near the annealing point of silica glass during the cooling step in the sintering process. Interfacial cracks were suppressed when the difference in the CTE of the interface between the 100 wt% SiO2 and 90 wt% SiO2‐Mo layers was relaxed by inserting layers of 95 wt% SiO2‐Mo between them. Furthermore, the suppression effect became stronger when the difference in the volume shrinkage of the layers was relaxed by sintering to join the separately sintered monolayers. Thus, the development of these cracks was influenced by the residual stress, CTE, and volume shrinkage. Therefore, these cracks can be prevented by optimizing these factors.  相似文献   

2.
The combination of carbohydrates with silicon‐based ceramic materials offers attractive means of production for high performance materials. Present article describes the synthesis of novel nanocomposites out of SiO2 and saponified guar‐graft‐poly(acrylonitrile) (SG). Tetraethoxysilane was used as the precursor for silica and growth of SiO2 phase was allowed concurrently in the presence of SG. The material so obtained was thermally treated at 80°C, 160°C, 500°C, and 900°C to study the effect of thermal curing on its properties. During the curing process, silanol surface groups of silica globules reacted to create the reinforced SiO2‐SG substance. It was observed that at 900°C, the SiO2 phase crystallized out in tetragonal shape (similar to Cristobalite form of silica) in presence of SG. The chemical, structural and textural characteristics of the composites were determined by FTIR, XRD, TGA‐DTA, SEM and BET studies. The materials were also evaluated as efficient Zn2+ metal binder. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 536–544, 2007  相似文献   

3.
Cation grain‐boundary diffusion in undoped and aliovalent‐doped Al2O3 is characterized using Cr2O3 as a chemical tracer. The compositional depth profiles measured by secondary ion mass spectrometry are fitted to the Whipple‐LeClaire model. The results indicate that cation grain‐boundary diffusivity is insensitive to MgO and SiO2 dopants between 1100°C and 1300°C.  相似文献   

4.
A series of the surface‐functionalized nano‐SiO2/polybenzoxazine (PBOZ) composites was produced, and an attempt was made to improve the toughness of PBOZ material, without sacrificing other mechanical and thermal properties. A benzoxazine functional silane coupling agent was synthesized to modify the surface of nano‐SiO2 particles, which were then mixed with benzoxazine monomers to produce the nano‐SiO2‐PBOZ nanocomposites. The notched impact strength and the bending strength of the nano‐SiO2‐PBOZ nanocomposites increase 40% and 50%, respectively, only with the addition of 3 wt % nano‐SiO2. At the same load of nano‐SiO2, the nano‐SiO2‐PBOZ nanocomposites exhibit the highest storage modulus and glass‐transition temperature by dynamic viscoelastic analysis. Moreover, the thermal stability of the SiO2/PBOZ nanocomposites was enhanced, as explored by the thermogravimetric analysis. The 5% weight loss temperatures increased with the nano‐SiO2 content and were from 368°C (of the neat PBOZ) to 379°C or 405°C (of the neat PBOZ) to 426°C in air or nitrogen with additional 3 wt % nano‐SiO2. The weight residue of the same nanocomposite was as high as 50% in nitrogen at 800°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
A functionally graded sintered body consisting of laminated SiO2/Mo layers was fabricated using spark plasma sintering. A high sintered‐body density was achieved using fine powders of SiO2 (4.0 μm) and Mo (1.3 μm), which ensured no cracks were formed between layers. The highest joining stress (1.2 MPa) was found to occur at the interface between SiO2 layers with 0 and 8 vol% Mo, with the electrical resistance decreasing rapidly when the Mo content was increased to 13 and 22 vol%. This is attributed to the use of spark plasma sintering, suggesting further work is needed to fully optimize this process.  相似文献   

6.
USY faujasites (SiO2/Al2O3 = 12, 30 and 80) were used as hydrodesulphurization (HDS) catalyst supports. Mo, Co and P were impregnated at two concentrations: ~12.5, ~3 and ~1.6 mass %; ~18, ~5.5 and ~2.2 mass % (CL and HL series, respectively). Surface acidity decreased after Co‐Mo‐P deposition. Sulphided catalysts were tested in dibenzothiophene (DBT) HDS (320°C, 5.59 MPa). The HDS rate slightly increased with both SiO2 content and Co‐Mo‐P loading. High selectivity to hydrogenated products suggested deficient Mo promotion in CL solids. Improved Mo promotion by Co (HL series) could be responsible for higher activity and marked selectivity to desulphurization to biphenyl.  相似文献   

7.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

8.
As an additive manufacturing technology, ultraviolet (UV)‐curing three‐dimensional printing, which requires the use of a photocurable resin, is increasingly being used to produce customized end‐user parts of many complex shapes. In this study, to improve the strength and ductility of printing materials, nano‐SiO2‐reinforced photocurable resins were prepared by a planetary ball mill; then, the morphology, photochemistry, thermal property, and mechanical properties of the nanocomposites were investigated and characterized. Transmission electron microscopy analysis indicated that the modified nano‐SiO2 was well dispersed in the photocurable resin. The glass‐transition temperature increased from 67.2°C for the unfilled resin to 71.7 and 80.1°C for nanocomposites with nano‐SiO2 contents of 0.3 and 0.7 wt %, respectively. The tensile strength and impact strength were increased by 46.7 and 165.3% for nanocomposites with 0.3 wt % nano‐SiO2. The flexural modulus of the nanocomposites increased from 1.7 to 8.0 GPa when 0.7 wt % nano‐SiO2 was added to the photocurable resin; this appeared to originate from the relatively high level of dispersion and the intimate combination of the nano‐SiO2 with the matrix. The investigation of the physical and chemical properties of such UV‐curing materials showed that the low filler concentration (<1 wt %) of nano‐SiO2 did not affect the processability of the nanocomposites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42307.  相似文献   

9.
Rare‐earth monosilicates (RE2SiO5, RE: rare‐earth elements), such as Yb2SiO5, have been developed for potential application as environmental barrier coating (EBC) materials. Yb2SiO5 coating would experience microstructure evolution under high‐temperature environment and accordingly its thermomechanical properties would be altered. In this study, Yb2SiO5 coating was fabricated by atmospheric plasma spray technique. The phase stability and microstructure change before and after thermal aging at 1300°C, 1400°C, and 1500°C were investigated. The changes in mechanical and thermal properties were characterized. The results showed that the as‐sprayed coating was mainly composed of Yb2SiO5 with a small amount of Yb2O3 and amorphous phase. Defects in the coating, including interfaces, pores, and microcracks, were greatly reduced with grain growth after thermal treatment. Thermal aging significantly modified the thermal and mechanical properties of the coating. The average CTE was increased by 13.1%, and the hardness and elastic modulus was increased by 42.4% and 49.4%, respectively, after thermal aging at 1500°C for 50 hour. The thermal conductivity of thermal‐aged coating was much higher than that of the as‐sprayed coating, which was still less than 2 W/(m·K). The influence of coating microstructure on the properties was analyzed and related to the failure mechanism of EBCs.  相似文献   

10.
Functionally graded nano‐TiO2 epoxy matrix composites were successfully fabricated using a centrifugal method. In the preparation of the composite, the aggregation of nano‐TiO2 occurred during curing, which had a negative effect on the composite performance. To solve this problem, we introduced a silane coupling agent to modify the surface of the nano‐TiO2, thereby improving the performance and mechanical properties simultaneously. The modified nano‐TiO2 (s‐TiO2) had better dispersion in the epoxy resin, making it possible to produce depth gradients of the mechanical properties of functionally graded materials (FGMs). The s‐TiO2 was characterized with respect to functional groups, morphology, and chemical elements using transmission electron microscopy, X‐ray photoelectron spectroscopy, and Fourier‐transform infrared spectroscopy. The results show that a silane layer was successfully coated on the surface. Also, the gradients of the mechanical and permittivity properties of the FGM indicated that by modifying the surface of the nano‐filler, it is possible to fabricate nano‐filler‐reinforced epoxy matrix FGMs using a centrifugal method. POLYM. COMPOS., 35:557–563, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
A novel low‐temperature sintering microwave dielectric based on forsterite (Mg2SiO4) ceramics was synthesized through the solid‐state reaction method. The effects of LiF additions on the sinterability, phase composition, microstructure, and microwave dielectric properties of Mg2SiO4 were investigated. It demonstrated that LiF could significantly broaden the processing window (~300°C) for Mg2SiO4, and more importantly the sintering temperature could be lowered below 900°C, maintaining excellent microwave dielectric properties simultaneously. The 2 wt% LiF‐doped samples could be well‐sintered at 800°C and possessed a εr ~ 6.81, a high Q×f ~ 167 000 GHz, and a τf ~ ?47.9 ppm/°C, having a very good potential for LTCC integration applications.  相似文献   

12.
High‐level waste feed composition affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a cold cap layer that floats on the molten glass where most feed‐to‐glass reactions occur. Data from X‐ray computed tomography imaging of melting pellets comprised of a simulated high‐aluminum feed reveal the morphology of bubbles, known as the primary foam, for various feed compositions at temperatures between 600°C and 1040°C. These feeds were formulated to make glasses with viscosities ranging from 0.5 to 9.5 Pa s at 1150°C, which was accomplished by changing the SiO2/(B2O3+Na2O+Li2O) ratio in the final glass. Pellet dimensions and profile area, average and maximum bubble areas, bubble diameter, and void fraction were evaluated. The feed viscosity strongly affects the onset of the primary foaming and the foam collapse temperature. Despite the decreasing amount of gas‐evolving components (Li2CO3, H3BO3, and Na2CO3), as the feed viscosity increases, the measured foam expansion rate does not decrease. This suggests that the primary foaming is not only affected by changes in the primary melt viscosity but also by the compositional reaction kinetic effects. The temperature‐dependent foam morphological data will be used to inform cold cap model development for a high‐level radioactive waste glass melter.  相似文献   

13.
Ultra low temperature co‐fired ceramics system based on zinc borate 3ZnO–2B2O3 (3Z2B) glass matrix and SiO2 filler was investigated with regard to the phase composition, the microstructure and the dielectric properties as functions of the filler content and sintering temperature. The softening temperature of 554°C and the crystallization temperature of around 650°C for the glass were confirmed by Differential Thermal Analysis result. The X‐ray diffraction results show that all SiO2‐filled samples were made up of SiO2, α‐Zn(BO2)2, Zn3B2O6 phases. And there was no chemical reaction between SiO2 and the glass during densification. And then the dielectric constant decreased with the increasing content of SiO2. At the level of 15 wt% SiO2 addition, the composites can be densified at a sintering temperature of 650°C for 30 min, and showed the optimal dielectric properties at 1 MHz with the dielectric constant of 6.1 and the dielectric loss of 1.3 × 10?3, which demonstrates a good potential for use in LTCC technology.  相似文献   

14.
The hybrid material of EP‐POSS mixture was synthesized by the hydrolysis and condensation of (γ‐glycidoxypropyl) trimethoxysilane. A series of binary systems of EP‐POSS/epoxy blends, epoxy resin modified by silica nanoparticles (SiO2/epoxy), and ternary system of SiO2/EP‐POSS/epoxy nanocomposite were prepared. The dispersion of SiO2 in the matrices was evidenced by transmission electron micrograph, and the mechanical properties, that is, flexural strength, flexural modulus, and impact strength were examined for EP‐POSS/epoxy blends, SiO2/epoxy, and SiO2/EP‐POSS/epoxy, respectively. The fractured surface of the impact samples was observed by scanning electron micrograph. Thermogravimetry analysis were applied to investigate the different thermal stabilities of the binary system and ternary system by introducing EP‐POSS and SiO2 to epoxy resin. The results showed that the impact strength, flexural strength, and modulus of the SiO2/EP‐POSS/epoxy system increased around by 57.9, 14.1, and 44.0% compared with the pure epoxy resin, Ti, Tmax and the residues of the ternary system were 387°C, 426°C, and 25.2%, increased remarkably by 20°C, 11°C and 101.6% in contrast to the pure epoxy resin, which was also higher than the binary systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 810‐819, 2013  相似文献   

15.
This study evaluated the ablation resistance of ZrC/SiC coating for carbon/carbon (C/C) composites at different temperatures and heat fluxes, which improved the researches on ultra‐high temperature oxidation of ZrC/SiC system. Results showed that the protection of coating depended on temperature and heat flux. Ablation test for 120 seconds under heat flux of 2.4 MW/m2 at 2270°C revealed a good ablation resistance, with the linear ablation rate reduced by 96.4% and the mass gain rate increased by 383.3% compared with those of pure ZrC coating. The good ablation resistance was attributed to the formation of dense oxide scale surface. SiC could improve the compactness of the oxide scale at this temperature by forming SiO2. A dense scale could not form at 2105°C after ablation for 120 seconds, resulting in a dissatisfactory ablation resistance of the coating. After ablation for 120 seconds at 1738°C, the coating was integrated due to the protection of glassy SiO2 encapsulated ZrO2. The coating could not resist the strong shear force from the flame at heat flux of 4.2 MW/m2 and was severely damaged after ablation for 60 seconds.  相似文献   

16.
The optically transparent poly(methyl methacrylate‐co‐maleic anhydride) P(MMA‐co‐MA)/SiO2? TiO2 hybrid materials were prepared using 3‐aminopropyl triethoxysilane as a coupling agent for organic and inorganic components. Real‐time FTIR was used to monitor the curing process of hybrid sol, indicating that imide group formation decreased with increasing titania content. scanning electron microscopy, atomic force microscopy, and differential scanning calorimetry results confirmed their homogeneous inorganic/organic network structures. TGA analysis showed that incorporated titania greatly prohibits the thermodegradation of hybrid films, especially at the content of 5.3 wt %, showing an increase of about 32.6°C at 5% loss temperature in air. The UV degradation behavior of P(MMA‐co‐MA) studied by quasi‐real‐time FTIR showed that TiO2 incorporated in the hybrid network provides a photocatalytic effect rather than a UV‐shielding effect. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1714–1724, 2005  相似文献   

17.
Asymmetric structures were fabricated by depositing Y2O3‐doped SiO2 (Si/Y) membranes onto γ‐Al2O3 supported by tubular α‐Al2O3. The thickness of the Y2O3‐doped SiO2 deposits was approximately 100 nm. The deposits/membranes have micropores with a pore diameter ~ <0.40–0.55 nm. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano‐permporometer. The gas permeance properties of the membranes were measured in the temperature range 100°C–500°C. The Y‐doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39 × 10?7 mol/m2/s/Pa for He and 6.19 × 10?10 mol/m2/s/Pa for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y‐doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2 ± 0.2 and 21.3 ± 0.7 kJ/mol for SiO2 and Si/Y, respectively.  相似文献   

18.
Rare‐earth (RE) monosilicates are promising candidates as environmental barrier coating (EBC) materials for ceramic matrix composites for aerospace applications. Five rare‐earth monosilicate materials have been investigated: Y2SiO5, Gd2SiO5, Er2SiO5, Yb2SiO5, and Lu2SiO5 produced from RE oxides and silica starting materials pressed and sintered at 1580°C under flowing air. Relative densities above 94% were obtained for all samples and ceramics were made containing 85–100 wt% of the RE monosilicate according to X‐ray diffraction (XRD) with RE disilicates as the second phase in the Gd, Yb, and Lu silicate systems. Microstructures were characterized using scanning electron microscopy and XRD, and thermal properties measured including specific heat, thermal expansion, and thermal diffusivity. For the first time, specific heat capacity values are reported for the monosilicates [0.45–0.69 J·(g·K)?1]. Thermal expansion coefficients (TECs) of the dense samples ranged between 5.9 and 10.3 × 10?6 K?1 measured for 473 to 1473 K. All EBCs have low thermal conductivities [1.8 W·(m·K)?1 or less] making them excellent EBC insulators.  相似文献   

19.
The organic–inorganic hybrid boron‐containing phenol–formaldehyde (BPFR) resin/SiO2 nanocomposites was synthesized in‐situ from boric acid, phenol, and tetramethoxysilane. The structure of BPFR modified and the distributions of silicon element were studied by Fourier‐transform infrared spectroscopy, energy dispersive X‐ray spectrometry, and transmission electron microscope, respectively. The glass transition temperature (Tg) was determined by torsional braid analysis. The results show that silicon element distribution is homogeneous, and the size of nanosilica is about 40–60 nm. The thermal stability and kinetics parameters of thermal degradation were determined by thermogravimetry analysis (TGA). TGA results show that the resin modified has higher heat resistance property when the additive quantity of SiO2 was 3 wt%. The temperature of 5% weight loss is 487.7°C, which is 12.4°C higher than that of common BPFR. The residual ratio of 3 wt% SiO2/BPFR was 62.3% at the temperature of 900°C, which is 11.2% higher than that of common BPFR. The mechanics loss peak Tp of 3% SiO2/BPFR is 33°C higher than common BPFR. Fiberglass‐reinforced BPFR modified by 3 wt% SiO2 has better mechanical and dielectric properties than that of common BPFR. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

20.
A CaO‐B2O3‐SiO2 (CBS) glass/40 wt% Al2O3 composite sintered at 900°C exhibited a dense microstructure with a low porosity of 0.21%. This composite contained Al2O3 and anorthite phases, but pure glass sintered at 900°C has small quantities of wollastonite and diopside phases. This composite was measured to have a high bending strength of 323 MPa and thermal conductivity of 3.75 W/(mK). The thermal conductivity increased when the composite was annealed at 850°C after sintering at 900°C, because of the increase in the amount of the anorthite phase. 0.25 wt% graphene oxide and 0.75 wt% multi‐wall carbon nanotubes were added to the CBS/40 wt% Al2O3 composite to further enhance the thermal conductivity and bending strength. The specimen sintered at 900°C and subsequently annealed at 850°C exhibited a large bending strength of 420 MPa and thermal conductivity of 5.51 W/(mK), indicating that it would be a highly effective substrate for a chip‐type supercapacitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号