首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Design procedure, technology and basic properties of a piezoelectric Low Temperature Co‐fired Ceramics (LTCC) accelerometer are presented in this paper. The sensor consists of a LTCC membrane with a seismic mass. Meggitt InSensor® PZT thick film has been applied as the sensing material. Finite element method (FEM) has been used to analyze the impact of the sensor geometry (membrane thickness, membrane and seismic mass radii) and PZT thick film placement on basic properties (sensitivity and bandwidth) of the device. The LTCC process was optimized in order to create thin and planar ceramic membrane with relatively huge seismic mass. Selected properties of the sensor have been measured and compared with the simulated ones.  相似文献   

2.
Ag2MoO4 ceramic was prepared by using the solid‐state reaction method, which could be sintered at 450°C for 2 h, having a relative permittivity of 8.08, a Qf value of 17 000 GHz, and a temperature coefficient of resonance frequency about ?133 ppm/°C. Ag2MoO4 ceramic was chemically compatible with silver but reacted seriously with aluminum to form (Ag0.5Al0.5)MoO4 during the sintering. The fitting of infrared spectra and the Shannon's additive rule were employed to study intrinsic dielectric behaviors of the ceramics at microwave region. Ionic displacive polarization and the electronic polarization contributed almost equally to the dielectric permittivity of the ceramic at microwave region. The Ag2MoO4 ceramics could be a good candidate for ultra‐low temperature co‐fired microwave devices.  相似文献   

3.
A Li and Ta modified (Na, K)NbO3 piezoelectric ceramic has been successfully co‐fired with inner copper electrodes in a reduced atmosphere. Highly dense NKN ceramics (95% relative density, 4.64 g/cm3) were obtained by sintering the samples in a low oxygen partial pressure (low pO2) atmosphere at 1050°C. The poly(propylene carbonate) binder system was used to permit a clean burnout at low temperature in N2 atmosphere, and also prevent the electrode copper particles from undergoing any oxidation. No interdiffusion of copper, chemical reactions, and/or carbon residues were observed in the grains, grain boundaries, or at the electrode–ceramic interface of the co‐fired samples from a detailed transmission electron microscopy (TEM) analysis. Dielectric and piezoelectric properties were characterized from those co‐fired prototyped samples. The samples displayed high relative dielectric permittivity above 800, with low dielectric loss about 3.6%. A normalized strain coefficient (max. strain/max. electric field) of = 220 pm/V was obtained under unipolar converse electromechanical measurement at 20 kV/cm. This paper presents the feasibility of co‐firing a Cu inner electrode with NKN ceramics toward multilayer lead‐free piezoelectric applications, providing an engineering route to narrow the performance differences between soft lead‐based piezoelectrics and lead‐free materials.  相似文献   

4.
Multilayer piezoelectric ceramic material with a composition of 0.1Pb(Ni1/3Nb2/3)O3‐0.35Pb(Zn1/3Nb2/3)O3‐0.15Pb(Mg1/3Nb2/3)O3‐0.1PbZrO3‐0.3PbTiO3‐4 mol% excess NiO (0.1PNN‐0.35PZN‐0.15PMN‐0.10PZ‐0.3PT‐0.04NiO) was fabricated by a roll‐to‐roll tape casting process and co‐fired with Ag/Pd electrode at low temperature of 950°C. Their dielectric, piezoelectric, and ferroelectric properties were evaluated. The effective piezoelectric coefficient d33 of the obtained multilayer piezoelectric material was 412 pm/V, while d33 for the ceramic pellet was 503 pm/V. Piezoelectric displacement measurements revealed small displacement hysteresis for the multilayer material. The combined characteristics of the multilayer piezoelectric material using the selected composition showed the potential for high power, high strain, and high force actuation applications. In addition, as the composition had a tetragonal phase, which substantially deviated from morphotropic phase boundary (MPB), the excellent properties may be more tolerant to stoichiometric fluctuation, which can allow larger processing and composition window as desired for scalable production.  相似文献   

5.
A miniature electrostatic thruster is being developed in Low Temperature Co‐fired Ceramic (LTCC) at Boise State University. The thruster is composed of an antenna to create the plasma, a cylinder to contain the plasma, and grids to extract the plasma beam at high velocity. In this work, the development of the inductively coupled plasma (ICP) antenna in LTCC will be presented. This antenna is fabricated using DuPont 951 LTCC tape. A Direct Write dispenser is used to apply silver paste for the spiral ICP antenna. Using LTCC allows for the antenna to be embedded in the device under a thin sheet of LTCC dielectric, which protects the antenna from ion back bombardment during operation. This thin sheet is the seventh layer of the total device, with the ICP antenna one layer below the top. The design of the antenna is based on the research done by J. Hopwood. This article discusses the fabrication and performance of the ICP antennas in LTCC. These ICP antennas are operated at pressures from 10 mTorr to 1 Torr with radio frequencies (RF) of 500 MHz to 1 GHz to inductively couple with low‐pressure argon to produce plasma. The performance of the antennas will be verified with data showing the start and stop power of the plasma at various pressures and an electric field map of the RF field above the antenna.  相似文献   

6.
In this paper, the phase compositions and the dielectric properties of 3ZnO–2B2O3 glass‐ceramic prepared by solid‐state method were investigated. The X‐ray diffraction patterns show that all sintered samples consist of Zn3B2O6 and α‐Zn(BO2)2. The dielectric properties changed significantly with the sintering temperature. After sintering at 650°C for 30 min, the glass‐ceramic exhibits optimum dielectric properties: a dielectric constant of 7.5 and a dielectric loss of 0.6 × 10?3 at 10 MHz. The chemical compatibility with Ag electrode under the co‐fired process illustrates a potential application in low temperature co‐fired ceramic field for the glass‐ceramic.  相似文献   

7.
Dielectric and piezoelectric properties of CuO‐added KNbO3 (KN) ceramics were investigated. The CuO reacted with the Nb2O5, formed a CuO–Nb2O5‐related liquid phase during the sintering, and assisted the densification of the KN ceramics at low temperatures. Moreover, some of the Cu2+ ions replaced the Nb5+ ions in the matrix and behaved as a hardener. The dielectric and piezoelectric properties of the KN ceramics were considerably influenced by the relative density. The 1.0 mol% CuO‐added KN ceramic sintered at 960°C for 1.0 h, which showed a maximum relative density, exhibited a high phase angle of 86.9°, Pr of 14.8 μC/cm2, and Ec of 1.8 kV/mm. This specimen also exhibited good dielectric and piezoelectric properties: εT33/εo of 364, d33 of 122 pC/N, kp of 0.29, and Qm of 611.  相似文献   

8.
The article describes technology of the low‐temperature co‐fired ceramics (LTCC) structure that enables light absorbance measurements of liquid sample. The manufactured ceramic structure contains buried microfluidic channels. The structure consists of two co‐fired glass windows that separate the light source and detector from the test solution. A construction of an electronic measurement system is described as well. The signal from three light‐emitting diodes (LED)s — red, green, and blue — can be used in the absorbance measurements. The light intensity is measured by the TCS 3414CS (TAOS, Plano, TX) color detector. Optical properties of the fabricated microfluidic LTCC system is investigated with several concentrations of potassium permanganate (KMnO4) in water solution. The system can be applied in microbiology for constant monitoring of bacterial growth.  相似文献   

9.
Recent advances in the development of high gauge factor thin films for strain gauges prompt the research on advanced substrate materials. A glass ceramic composite has been developed in consideration of a high coefficient of thermal expansion (9.4 ppm/K) and a low modulus of elasticity (82 GPa) for the application as support material for thin‐film sensors. In the first part, constantan foil strain gauges were fabricated from this material by tape casting, pressure‐assisted sintering, and subsequent lamination of the metal foil on the planar ceramic substrates. The accuracy of the assembled load cells corresponds to accuracy class C6. That qualifies the load cells for the use in automatic packaging units and confirms the applicability of the low‐temperature co‐fired ceramic (LTCC) substrates for fabrication of accurate strain gauges. In the second part, to facilitate the deposition of thin‐film sensor structures to the LTCC substrates, pressure‐assisted sintering step is modified using smooth setters instead of release tapes, which resulted in fabrication of substrates with low average surface roughness of 50 nm. Titanium thin films deposited on these substrates as test coatings exhibited low surface resistances of 850 Ω comparable to thin films on commercial alumina thin‐film substrates with 920 Ω. The presented material design and advances in manufacturing technology are important to promote the development of high‐performance thin‐film strain gauges.  相似文献   

10.
In this study, laminates consisting of sintered alumina substrates and green Low Temperature Co‐fired Ceramics (LTCC) tapes have been produced via Cold Low Pressure Lamination which is based on adhesive tapes for joining of layers at room temperature and pressures <5 MPa. The influences of lamination parameters such as temperature, pressure, and time on the quality of the green and sintered multilayer stack have been determined. If the bottom LTCC layer of an alumina–LTCC–LTCC laminate is metallized by screen printing defects such as crack formation can occur due to stress formation caused by constrained sintering. By adapting the lamination parameters, these stresses can be avoided. Another defect observed is cavities which form along the printed circuit lines. This type of defect is caused by the shrinkage of the circuit line width during firing; by reducing the height of the conductor line during screen printing, the cavity size can be reduced. In addition, different screen‐printed metallization layouts have been tested to determine the influence of line and spaces on the quality of sintered laminates.  相似文献   

11.
We investigated the influence of CuO amount (0.5–3.0 mol%), sintering temperature (900°C–1000°C), and sintering time (2–6 h) on the low‐temperature sintering behavior of CuO‐added Bi0.5(Na0.78K0.22)0.5TiO3 (BNKT22) ceramics. Normalized strain (Smax/Emax), piezoelectric coefficient (d33), and remanent polarization (Pr) of 1.0 mol% CuO‐added BNKT22 ceramics sintered at 950°C for 4 h was 280 pm/V, 180 pC/N, and 28 μC/cm2, respectively. These values are similar to those of pure BNKT22 ceramics sintered at 1150°C. In addition, we investigated the performance of multilayer ceramic actuators made from CuO‐added BNKT22 in acoustic sound speaker devices. A prototype sound speaker device showed similar output sound pressure levels as a Pb(Zr,Ti)O3‐based device in the frequency range 0.66–20 kHz. This result highlights the feasibility of using low‐cost multilayer ceramic devices made of lead‐free BNKT‐based piezoelectric materials in sound speaker devices.  相似文献   

12.
Low‐temperature co‐fired ceramics (LTCC) enable the fabrication of microfluidic elements such as channels and embedded cavities in electrical devices. Hence, LTCC facilitate the realization of complex and integrated microfluidic devices. Examples can be applied in many areas like reaction chambers for synthesis of chemical compounds. However, for many applications it is necessary to have an optically transparent interface to the surroundings. The integration of optical windows in LTCC opens up a wide field of new and innovative applications such as the observation of chemiluminescent reactions. These chemical reactions emit electromagnetic radiation and thus offer a method for noninvasive detection. Thin glasses (≤500 μm) were bonded by thermocompression onto a LTCC substrate. As the bonding agent, a glass frit paste was used. Borosilicate glasses, fused silica as well as silicon were successfully bonded onto LTCC. To join materials with a large coefficient of thermal expansion mismatch (i.e., fused silica and LTCC), it is necessary to limit the heat input to the bond interface. Therefore, a heating structure was integrated into the LTCC substrate beneath the bond interface. This bonding process provides a gas‐tight optical port with a high bond strength.  相似文献   

13.
Conventional sintering of (Na1− x K x )0.5Bi0.5TiO3 (abbreviated as NKBT x , x =18–22 mol%) lead-free piezoelectric ceramics was investigated to clarify the optimal sintering temperature for densification and electrical properties. Both sintered density and electrical properties were sensitive to sintering temperature; particularly, the piezoelectric properties deteriorated when the ceramics were sintered above the optimum temperature. The NKBT20 and NKBT22 ceramics synthesized at 1110°–1170°C showed a phase transition from tetragonal to rhombohedral symmetry, which was similar to the morphotropic phase boundary (MPB). Because of such MPB-like behavior, the highest piezoelectric constant ( d 33) of about 192 pC/N with a high electromechanical coupling factor ( k p) of about 32% were obtained in the NKBT22 ceramics sintered at 1150°C.  相似文献   

14.
Piezoelectric ceramics Pb(Ni1/3Nb2/3)O3–Pb(Mg1/2W1/2)O3–Pb(Sb1/2Nb1/2)O3–Pb(Zr0.39Ti0.61)O3 with Ba(Cu1/2W1/2)O3 sintering aids were fabricated using economical industrial oxide powders and their piezoelectric, dielectric, and ferroelectric properties were investigated in order to develop low‐temperature sintering ceramics for multilayer piezoelectric actuators. A quadratic formula and the Curie–Weiss law reveal that the ceramics are typical displacive‐type ferroelectric relaxors. The ceramics sintered as low as 900°C have good piezoelectric properties of d33 = 551 pC/N, kp = 0.52, εr = 3583, tgδ = 0.02, and TC = 161°C, which is much promising to manufacture multilayer piezoelectric transducers.  相似文献   

15.
The CaMoO4xY2O3xLi2O ceramics were prepared by the solid‐state reaction method. The sintering behavior, phase evolution, microstructure, and microwave dielectric properties were investigated. CaMoO4 solid solution was obtained when x = 0.030, and two‐phase system including tetragonal CaMoO4 phase and cubic Y2O3 phase formed when 0.066 ≤ x ≤ 1.417. A temperature stable CaMoO4‐based microwave dielectric ceramic with ultralow sintering temperature (775°C) was obtained in the CaMoO4xY2O3xLi2O system when x = 0.306, which showed good microwave dielectric properties with a low permittivity of 9.5, a high Qf value of 63 240 GHz, and a near‐zero temperature coefficient of resonant frequency of +7.2 ppm/°C.  相似文献   

16.
Hard piezoelectrics with high dielectric and piezoelectric constants are used for high-power applications. However, the sintering temperature of these ceramics is high, around 1200°C, restricting the usage of cheap base metal electrodes in fabrication of multi-layer components. This study investigates the effect of CuO and ZnO on the sintering temperature of a hard piezoelectric, APC 841, which is a MnO2- and Nb2O5-modified PZT. The addition of CuO decreased the sintering temperature through the formation of a liquid phase. However, the piezoelectric properties of the CuO-added ceramics sintered at ≤950°C were lower than the desired values. The addition of ZnO resulted in a significant improvement in the piezoelectric properties. This enhancement was attributed to the formation of a homogeneous microstructure with large grains. The APC 841+0.2 wt% CuO+1.1 wt% ZnO ceramics sintered at 950°C showed excellent piezoelectric and dielectric properties with values of k p=0.532, Q m=750, d 33=351 pC/N, ɛ33o=1337, and T c=280°C.  相似文献   

17.
The possibility of the application of fluorescence‐based detection method in a microfluidic system is discussed. It consists of a microfluidic module and complementary housing. Both parts are made from LTCC technology. Three microfluidic module designs are analysed. They vary by way of their constructions of a transparent window, which is used for the transmission of a fluorescence signal from the module to the photodetector integrated onto the housing. The influence of the type of materials used for optical windows on performance of the system is discussed. According to the performed measurements, a concentration as low as 0.03 ng/mL was detected.  相似文献   

18.
Li/Ta-codoped lead-free (Na,K)NbO3 ceramics with a nominal composition of [(Na0.535K0.480)0.942Li0.058](Nb0.90Ta0.10)O3 were synthesized normally at 1070°–1100°C. The XRD patterns of all samples show a single pervoskite structure with tetragonal symmetry. Although MPB separating the orthorhombic and tetragonal symmetries was absent, the maximum piezoelectric coefficient ( d 33), electromechanical coupling coefficient ( k p), Curie temperature ( T c), and remanent polarization ( P r) were optimized as 216 pC/N, 38.1%, 445°C, and 8.73 μC/cm2, respectively.  相似文献   

19.
xSrTiO3–(1?x)LaAlO3 ceramics with ZnO–B2O3 sintering aid were prepared by solid‐state reaction method leading to a significant decrease in sintering temperature from 1550°C to 1050°C. The structure, microwave dielectric properties, and low‐temperature sintering behavior were systematically investigated. The results revealed the relationships among ionic size, ionic polarizability and cell volume. With increasing additive, chemical ordering of B‐site cations was indicated with selected area electron diffraction (SAED) patterns, HRTEM images and Raman spectrum, which contributed to the greatly enhanced microwave dielectric properties. Particularly, the 0.7Sr0.85 Mg0.15TiO3–0.3LaAlO3 ceramics modified with 10 wt % ZnO‐B2O3 can further decrease the sintering temperature down to 950°C without deteriorating its performance. Thermal tests implied ceramics featured good chemical compatibility with Cu/Ag electrode. Thus, they can be cofired with internal Cu/Ag electrodes in special patterns to fulfill different electrical functions for LTCC (low‐temperature cofired ceramic) application.  相似文献   

20.
以纳米h-BN和Si C粉为原料、B2O3为烧结助剂,利用放电等离子烧结(SPS)制备h-BN-Si C复相陶瓷,研究了烧结压力(20~50 MPa)对h-BN-Si C复相陶瓷结构与力学性能的影响。结果表明:在不同烧结压力下,h-BN-Si C复相陶瓷中h-BN晶粒的c轴倾向于平行压力方向,增大烧结压力能够提高复相陶瓷的致密化和力学性能,但较大的烧结压力(40 MPa)降低了c轴倾向于平行压力方向的取向度和断裂韧性。在40 MPa烧结压力时获得了较佳的综合性能,复相陶瓷的相对密度、抗弯强度和断裂韧性分别达到98%、289.2 MPa和3.45 MPa·m1/2,比同条件制备的纯h-BN陶瓷的抗弯强度和断裂韧性分别提高了约138.4%和64.3%。复相陶瓷断裂为典型的沿晶断裂模式,微裂纹及裂纹偏转提高了复相陶瓷的断裂韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号