首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A hexagonal form of tungsten trioxide (h‐WO3, particle size: 15.9‐57.1 nm) was found to be formed by a direct reaction between metallic tungsten powder (W, particle size: 0.45‐0.59 μm) and 15%‐30% hydrogen peroxide (H2O2) aq solution. Oxide film on the powder surface having the similar crystal structure as h‐WO3 was essential for the formation, and the surface oxide film was formed by aging the powder in air at 45°C, a relative humidity of 100% (PH2O 96 hPa) for 3‐28 days or in ambient atmosphere at room temperature for 12 years. The Rietveld analysis performed in the space group P63/mcm (Z = 6) indicated the crystal structures were the same as those of the reported h‐WO3 and that the crystallographic characteristic was as follows: a = 0.74219 nm, c = 0.77198 nm for h‐WO3 from the 28‐day aged powder, and a = 0.74538 nm, c = 0.77194 nm for h‐WO3 from the 12‐year aged powder.  相似文献   

2.
We report a relative humidity sensor based on manganese‐nanoparticle‐loaded mesoporous silica SBA‐15 using a facile hydrothermal route. The as‐developed nanocomposite material (Mn/SBA‐15) possesses a high surface area and a high pore volume. The obtained samples were characterized by using low‐angle X‐ray Diffraction (XRD), Fourier‐transform infrared spectroscopy (FTIR), N2 adsorption–desorption, high‐resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and energy‐dispersive X‐ray (EDX) spectroscopy techniques. The Mn/SBA‐15 exhibited, improved humidity response and recovery time as compared to pure SBA‐15 in the 11%–92% RH range. Optimal results were obtained for the 5 wt% Mn‐loaded SBA‐15 sample, which displayed excellent linearity, low hysteresis, and high humidity response. A change in ~5 orders of magnitude in resistance was observed over 11%–92% RH range. The investigation of humidity sensing properties of Mn/SBA‐15 nanocomposite shows that this material has good prospects as humidity sensor.  相似文献   

3.
Two new methods for preparing submicrometer powders of M2(WO4)3, M = Sc, In, and Al via combustion synthesis are reported. Stoichiometric combinations of trivalent metal nitrates, ammonium metatungstate, and either urea or carbohydrazide as the fuel were reacted at 550°C, producing amorphous or poorly crystallized powders with an average particle size ranging from 164 to 350 nm. Calcining the powders at 800°C for 1 h produced well‐crystallized, phase‐pure powders with an average particle size ranging from 210 to 711 nm. Powders sintered at 1000°C for 14 h resulted in pellets that were 87%–95% of the theoretical density, which is notably higher than typically obtained from powders prepared by solid‐state reaction. Whereas there was little difference in the microstructure of Al2(WO4)3 pellets prepared with the two different powders, the carbohydrazide‐derived powders resulted in In2(WO4)3 and Sc2(WO4)3 pellets with a larger grain size than those prepared with urea‐derived powders. The electrical conductivity of the sintered pellets, while comparable to that reported for polycrystalline M2(WO4)3 prepared by solid‐state reaction, was strongly influenced by grain‐boundary effects.  相似文献   

4.
Poly(p‐diethynylbenzene) (PDEB) synthesized with nickel catalyst Ni(CC ○ CCH)2(PPh3)2 (Ni C) in dioxane–toluene mixed‐solvent system at 25°C shows a rich trans structure with pendant‐group ( ○ CCH) content of about 35% having higher molecular weight and good solubility. A novel resistive‐type humidity sensor based on PDEB is presented. Its humi‐sensing characteristics are described and discussed. The impedance of the sensor changed from ∼ 103–107 Ω in almost the whole humidity range [∼ 15–92% relative humidity (RH)], which is low compared with sensors based on other humi‐sensitive conjugate polymers, and hysteresis of no more than 3% RH was observed. The sensor prepared by Langmuir–Blodgett (LB) deposition method shows the best humidity response. An explanation of humi‐sensing behavior of PDEB is attempted by taking into account the interaction between hydrogen protons and super π‐conjugate orbits in PDEB. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2010–2015, 1999  相似文献   

5.
《Ceramics International》2016,42(14):15301-15310
Co-precipitated undoped and Cr-doped WO3 nanosheets have been investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) in order to study the influence of Cr doping on their structural and morphological properties. XRD analyses confirm the monoclinic structure of nanocrystalline WO3, whereas the FESEM and TEM images exhibit nanosheet-like morphology of the as-synthesized WO3 materials. Among all the samples examined, the 1.5 at% Cr-doped WO3 nanosheets exhibit the selective maximum response (~82%) to formaldehyde over methanol, ethanol, propan-2-ol and acetone at the operating temperature of 200 °C for 50 ppm concentration in air. The sensing mechanism has been explained based on chemisorption of oxygen on the WO3 surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules.  相似文献   

6.
In this study, we report template and surfactant‐free, low temperature (70°C) synthesis of needle‐like α‐FeOOH and its conversion at 400°C into α‐Fe2O3 nanorods using Fe(+2) and Fe(+3) chlorides and urea as a hydrolysis‐controlling agent. The isolated needle‐like α‐FeOOH indicates asparagus‐type growth pattern having length ca. 600 nm with 80 nm diameter at base and apex diameter of around 10 nm. The sample on heating (α‐Fe2O3) shows nanorod‐like morphology. The samples were characterized using various physicochemical characterization techniques such as XRD, Raman spectroscopy, UV‐Vis spectroscopy, particle size distribution analysis, Field Emission Scanning Electron Microscopy (FE‐SEM), and humidity sensing performance. The humidity sensing behavior of both α‐FeOOH and α‐Fe2O3 was studied. The α‐FeOOH shows quicker (10 s) and higher response toward change in humidity from 20%RH to 90%RH as compared with α‐Fe2O3 (60 s). Their typical morphology and crystalline structure plays an important role in humidity sensing behavior.  相似文献   

7.
We report humidity sensing characteristics of CdTiO3 nanofibers prepared by electrospinning. The nanofibers were porous having an average diameter and length of ~50–200 nm and ~100 μm, respectively. The nanofiber humidity sensor was fabricated by defining aluminum electrodes using photolithography on top of the nanofibers deposited on glass substrate. The performance of the CdTiO3 nanofiber humidity sensor was evaluated by AC electrical characterization from 40% to 90% relative humidity at 25 °C. The frequency of the AC signal was varied from 10?1 to 106 Hz. Fast response time and recovery time of 4 s and 6 s were observed, respectively. The sensor was highly sensitive and exhibited a reversible response with small hysteresis of less than 7%. Long term stability of the sensor was confirmed during 30 day test. The excellent sensing characteristics prove that the CdTiO3 nanofibers are potential candidate for use in high performance humidity sensors.  相似文献   

8.
《Ceramics International》2023,49(18):29534-29541
Tungsten trioxide (WO3) is a classical electrochromic (EC) material with advantages of abundant reserves, high coloration efficiency and cyclic stability. However, WO3 films are often accompanied by a narrow spectrum of modulation due to a single-color change from transparent to blue. In this work, we report a wide-spectrum tunable WO3·H2O nanosheets EC film solvothermally grown on fluorine-doped tin oxide (FTO) glass. Interestingly, the crystalline WO3·H2O nanosheets film is transformed into amorphous WO3 after annealing at 250 °C for 1 h. The amorphous film can be transformed into crystalline WO3 film by increasing the annealing temperature to 450 °C. After annealing at 250 °C, the WO3 film exhibits an optical modulation of 75.8% in a broad solar spectrum range of 380–1400 nm and blocks 88.9% of solar irradiance. Fast switching responses of 4.9 s for coloration and 6.0 s for bleaching, and a coloration efficiency of 86.4 cm2 C−1 are also achieved. Additionally, the WO3 film annealed at 250 °C also demonstrates an excellent cyclic stability, where 99.6% of the initial optical modulation can be retained after 1500 cycles. This simple and mild solvothermal method used in this work provides a new idea for the preparation of wide-spectrum tunable WO3 EC films.  相似文献   

9.
The plasmonic effects of infiltrated silver (Ag) nanoparticles, with different contents, inside a nanostructured TiO2 film on the photovoltaic performance of dye‐sensitized solar cells (DSSCs) are explored. The synthesized Ag nanoparticles are immobilized onto deposited TiO2 nanoparticles by a new strategy using 3‐mercaptopropionic acid (MPA), a bifunctional linker molecule. Transmission electron microscope (TEM) images show that monodispersed Ag and polydispersed TiO2 nanoparticles have an average diameter of 12 ± 3 nm and 5 ± 1 nm, respectively. Moreover, Fourier transform infrared spectroscopy (FTIR) analysis reveals that Ag nanoparticles were successfully functionalized and capped with MPA. Optical studies on the MPA‐capped Ag nanoparticles inside TiO2 film show an increase in the total absorbance of the electrode. Moreover, EIS measurements confirm that MPA‐capped Ag nanoparticles inhibit the charge recombination and improve the stability of nanoparticles in I3?/I? electrolyte. The DSSC assembled with optimal content of MPA‐capped Ag nanoparticles demonstrated an enhanced power conversion efficiency (8.82% ± 0.07%) compared with the pure TiO2 (7.30% ± 0.05%). The increase in cell efficiency was attributed to the enhanced dye light absorption in strength and spectral range due to the surface plasmon resonance of MPA‐capped Ag nanoparticles in the photoanode.  相似文献   

10.
《Ceramics International》2017,43(16):13185-13192
WO3 is one of the inspiring sensing materials that show high response to O3; an efficient fabrication of WO3 film with incorporation of complementary additives is essential for enhanced sensitivity. Here we report film deposition by liquid flame spraying, characterization of nanostructured WO3-reduced graphene oxide (rGO) composites and their gas-sensing activities to O3. The starting feedstock was prepared from WCl6 and rGO for pyrolysis synthesis by flame spraying. Nano-porous WO3-rGO films were successfully fabricated and characterized by transmission electron microscopy, field emission scanning electron microscopy, Raman spectrometry, thermal analyses and X-ray diffraction. Nanosized WO3 grains exhibited oriented nucleation on rGO flakes whereas rGO retained intact its nano-structural features after spraying. Constrained grain growth of WO3 of 60–70 nm in size was realized in the rGO-containing films with as compared to ~220 nm in the pure WO3 film. The WO3-rGO film sensors showed quicker response to O3 and faster recovery than rGO-free WO3 film sensors. Addition of rGO in 1.0 wt% or 3.0 wt% in the films caused a significantly reduced effective working temperature of the film sensors from ~ 250 °C to ~ 150 °C.  相似文献   

11.
We report the preparation of Ag/WO3 nanobars, mediated by cationic surfactant CTAB through hydrothermal route. XRD revealed the formation of metallic Ag supported on monoclinic WO3 phase and TEM diagram showed the formation of bar-like structure, where supported Ag nanoparticles are in the range between 2 and 7 nm. The catalyst exhibited high activity for selective oxidation of cyclohexanone to caprolactone with H2O2. A cyclohexanone conversion of 97% with 99% caprolactone selectivity was achieved over this catalyst at 80 °C temperature. Moreover, the catalyst did not show any significant activity loss even after 5 reuses and proved its efficiency in the oxidation of other cycloalkanones also.  相似文献   

12.
《Ceramics International》2016,42(6):7309-7314
Metal oxide nanocomposite sensors based on γ-Fe2O3 and WO3 were investigated in acetone vapor of various concentrations (1–100 ppm) at operating temperatures between 250 and 350 °C. The composites were prepared by simple solid state mixing and porous thick-film gas sensors were fabricated on alumina substrates. The γ-Fe2O3:WO3 (50:50) nanocomposite showed a marked enhancement in sensing response down to 1 ppm acetone vapor detection at 300 °C. The response was ~2-fold better compared to pure WO3 or pure γ-Fe2O3 with a very fast response (1 s) and very short recovery time (3 s). No appreciable sensitivity was observed towards alcohol vapor (an interfacing agent for diabetics) and in moisture (present in breath). The enhanced performance was due to n–n heterojunction effect.  相似文献   

13.
《Ceramics International》2021,47(24):34820-34827
Thermal quenching of luminescence is the most critical problem for rare earth doped phosphors used in light-emitting diodes (LEDs). Herein, we demonstrate that thermal quenching can be considerably suppressed via the negative thermal expansion effect in Zr(WO4)2 that serves as host for Eu3+ red emission. The photoluminescence (PL) intensity is surprisingly enhanced by 130% when the temperature is raised from room temperature to 100 °C. As temperature further increases to 160 °C, the PL intensity turns to reduce, which is still 1.4 times of that at room-temperature. Moreover, Zr(WO4)2:15%Eu phosphor has good durability, which still exhibits strong red luminescence (only 13% loss) after being kept in 85 °C/85% relative humidity chamber for 240 h. The anti-thermal quenching of Eu3+ luminescence can be ascribed mainly to the following two factors: first one is the thermal-enhanced energy transfer between Eu3+ ions induced by the contraction of Zr(WO4)2 unit-cell volume that leads to the strong structural rigidity of host lattice; second one would be electron traps in the host that favors the increase of electrons on the excited energy levels. This important anti-thermal quenching effect induced from the negative thermal expansion of the host matrix may stimulates a novel and efficient approach to design highly thermal stable phosphors for next-generation LEDs.  相似文献   

14.
《Ceramics International》2022,48(13):18687-18698
Recently, octahedral molecular sieve hexagonal structure (called h’) of WO3 was discovered for enhancing the physical and electrical properties, which is a promising candidate for electrochemical and energy storage applications. Nevertheless, the number of research on this new structure is still limited. In this study, novel h’-WO3 nanoflakes and nanopolygons decorated with Ag nanoparticles were synthesized using a one-step hydrothermal method. Ag decoration of the h’-WO3 nanostructure did not affect its crystal structure and morphology but remarkably enhanced its physicochemical properties. Ag decoration narrowed the optical bandgap, increased the oxygen deficiency, and increased the charge transfer between WO3 and the Ag NPs, which consequently increased the antibacterial and photocatalytic activity. The sample decorated with 5.0 wt% Ag showed the highest methylene blue degradation efficiency and antibacterial activity with S. aureus, while the sample decorated with 7.0 wt% Ag exhibited the highest antibacterial activity with E. coli. The sample decorated with 5.0 wt% Ag displayed the highest electrochromic performance with high optical contrast (ΔT ~70% at 800 nm, 57.3% at 633 nm, and 35.5% at 550 nm with a ±3 V applied potential for coloring/bleaching) and fast coloring/bleaching times (13.5/7.5 s). This work provides a facile approach for preparing high-performance materials for a variety of eco-friendly applications.  相似文献   

15.
In this work, novel series of (1 ? x)Li2MO4xTiO2 (M = Mo, W; x = 0.3, 0.4, 0.45, 0.5, 0.6) ceramics were developed for microwave dielectric application. They were prepared via the mixed‐oxide process and the phase composition, microstructures, sintering behaviors, and microwave dielectric properties were investigated. The X‐ray diffraction (XRD) pattern and scanning electron microscope analysis indicated that the Li2MO4 (M = Mo, W) did not react with rutile TiO2 and a stable two‐phase composite system Li2MO4–TiO2 (M = Mo, W) was formed. The XRD pattern of cofired ceramics revealed that some parts of Li2MoO4 phase and very small part of Li2WO4 phase react with Ag to form Ag2MoO4 phase and Ag2WO4 phase, respectively. At x = 0.45–0.5, temperature stable microwave dielectric materials with low sintering temperature (700°C–730°C) were obtained: εr = 10.6–11.0, Qf = 30 060–32 800 GHz, and temperature coefficient of resonant frequency ~0 ppm/°C.  相似文献   

16.
《Ceramics International》2017,43(11):8183-8189
Hierarchical WO3 dendrites were synthesized via low-cost and environmental-friendly solvothermal strategy. Characterization results indicated that WO3 dendrites were composed of several multi-directional dendritic nanosheets. To further understand the formation of WO3 dendrites, time-dependent experiments were carried out and formation mechanism was investigated. Since such dendritic structures rarely occurred in the field of gas sensing, the synthesized WO3 dendrites were subjected to detailed NO2 sensing tests. Results demonstrated that WO3 dendrites based sensors had low detection limit (200 ppb) and fast response and recovery (7 s, 12 s to 5 ppm NO2). Moreover, the sensor was also highly sensitive, selective and stable at low optimal operating temperature of 140 °C.  相似文献   

17.
DTA, XRD and SEM investigations were conducted on the (1  x)TeO2xWO3 glasses (where x = 0.15, 0.25 and 0.3). Whereas the 0.75TeO2–0.25WO3 and 0.7TeO2–0.3WO3 glasses show no exothermic peaks, an indication of no crystallization in their glassy matrices, two crystallization peaks were observed on the DTA plot of the 0.85TeO2–0.15WO3 glass. On the basis of the XRD measurements of the 0.85TeO2–0.15WO3 glass samples heated to 510 °C and 550 °C (above the peak crystallization temperatures), α-TeO2 (paratellurite), γ-TeO2 and WO3 phases were detected in the sample heated to 510 °C and the α-TeO2 and WO3 phases were present in the sample heated to 550 °C. SEM micrographs taken from the 0.85TeO2–0.15WO3 glass heated to 510 °C showed that centrosymmetrical crystals were formed as a result of surface crystallization and were between 3 μm and 15 μm in width and 12 μm and 30 μm in length. On the other hand, SEM investigations of the 0.85TeO2–0.15WO3 glass heated to 550 °C revealed the evidence of bulk massive crystallization resulting in lamellar crystals between 1 μm and 3 μm in width and 5 μm and 30 μm in length. DTA analyses were carried out at different heating rates and the Avrami constants for the 0.85TeO2–0.15WO3 glass heated to 510 °C and 550 °C were calculated as 1.2 and 3.9, respectively. Using the modified Kissinger equation, activation energies for crystallization were determined as 265.5 kJ/mol and 258.6 kJ/mol for the 0.85TeO2–0.15WO3 glass heated to 510 °C and 550 °C, respectively.  相似文献   

18.
This work deals with the study of hydrothermally synthesized zinc oxide (ZnO) loaded mesoporous SBA‐15 hybrid nanocomposite for relative humidity sensing (RH) at room temperature. The sensor exhibits an excellent ~5 orders impedance change along with excellent linearity, quick response time (17 s), rapid recovery time (18 s), negligible hysteresis (1.2%), good repeatability, and stability (1.8%) in 11%–98% RH range. In addition, complex impedance spectra of the sensor at different RHs were analyzed to understand the humidity sensing mechanism. Our study can open a new way for realizing ZnO/SBA‐15 hybrid nanocomposite for fabrication of high‐performance RH sensors.  相似文献   

19.
Semiconducting oxide gas sensors based on La0.8Sr0.2Fe1?xCuxO3 (x = 0, 0.05, 0.10) (LSF, LSFC05, and LSFC10, respectively) were prepared by screen-printing for humidity detection at room temperature.The thick-films were heat-treated at 800, 900 and 1000 °C for 1 h and all the compositions proved to be effective in humidity sensing and presented a good reproducibility between several measurements. However, the best results were obtained with LSFC10 fired at 800 °C which showed a detection limit of 15% relative humidity and a maximum sensor response of about 87%, higher than the previous results. Copper addition to lanthanum strontium ferrites proved to be effective in lowering the sensors’ detection limit.  相似文献   

20.
A hydrated tungsten oxide (WO3·nH2O)-embedded aniline–formaldehyde condensate (AFC/WO3·nH2O) nanocomposite thin film was prepared on an indium tin oxide (ITO)-coated glass surface via vacuum-deposition technique. The resulting AFC/WO3·nH2O/ITO thin film was characterized using ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and electron microscopy (SEM). The composite thin film exhibited a crystalline surface morphology containing nanocrystals of WO3·nH2O with a diameter ranging from 15 to 20 nm. The AFC/WO3·nH2O/ITO film allowed for the low potential detection of NO2 gas at a concentration range from 0 to 9000 ppm. The NO2 gas sensing characteristics were studied by measuring the change in the current with respect to concentration and time. The current of the AFC/WO3·nH2O/ITO film linearly increased with an increase in concentration of NO2 gas with a response of ~20 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号