首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat transfer coefficients for nucleate boiling of methane, ethane, ethylene, argon and carbon dioxide were determined using an apparatus for the precise investigation of pool boiling heat transfer in the low temperature range. The apparatus used a horizontal cylinder as the heating element. The influence of the thermophysical properties of the boiling liquid was established by comparing the absolute values of the heat transfer coefficients in a normalized boiling state, i.e. a saturation pressure equal to 10% of the critical pressure and a heat flux density equal to 2 × 104 W m−2. By including the results for a number of higher boiling liquids, which were investigated previously under similar experimental conditions, and using literature data for three very low boiling liquids, an empirical correlation is established which allows an approximate prediction of the absolute value of the heat transfer coefficient at nucleate boiling for substances of different molecular structure.  相似文献   

2.
Influence of the heat flux in mixture boiling: experiments and correlations   总被引:3,自引:0,他引:3  
Heat transfer at nucleate pool boiling of the binary and ternary refrigerant mixtures R404A, R407C and R507 at the outside of a horizontal tube with emery ground surface has been investigated in a wide range of pressures and heat fluxes. Together with experimental data of Bednar and Bier for wide boiling ethane/n-butane mixtures, the results of these comparatively narrow boiling mixtures are used to investigate the influence of heat flux q on the heat transfer coefficient as predicted by various correlations for nucleate boiling of mixtures. At comparatively high saturation pressures with experimental -values markedly smaller than the molar average of the pure components, the ,q-relationships predicted differ significantly from the experimental, particularly for wide boiling mixtures.  相似文献   

3.
This paper presents pool boiling heat transfer data for 12 different R134a/lubricant mixtures and pure R134a on a Turbo-BII™-HP surface. The mixtures were designed to examine the effects of lubricant mass fraction, viscosity, and miscibility on the heat transfer performance of R134a. The magnitude of the effect of each parameter on the heat transfer was quantified with a regression analysis. The mechanistic cause of each effect was given based on new theoretical interpretation and/or one from the literature. The model illustrates that large improvements over pure R134a heat transfer can be obtained for R134a/lubricant mixtures with small lubricant mass fraction, high lubricant viscosity, and a large critical solution temperature (CST). The ratio of the heat flux of the R134a/lubricant mixture to that of the pure R134a for fixed wall superheat was given as a function of pure R134a heat flux for all 12 mixtures. The lubricant that had the largest CST with R134a exhibited the greatest heat transfer: 100%±20% greater than that of pure R134a. By contrast, the heat transfer of the mixture with the lubricant that had the smallest viscosity and the smallest CST with R134a was 55%±9% less than that of pure R134a. High-speed films of the pure and mixture pool boiling were taken to observe the effect of the lubricant on the nucleate boiling.  相似文献   

4.
Flow boiling of ammonia and hydrocarbons: A state-of-the-art review   总被引:1,自引:1,他引:0  
A comprehensive review of flow boiling heat transfer, two-phase pressure drops and flow patterns of ammonia and hydrocarbons applied in air-conditioning, refrigeration and heat pump systems is presented in this paper. First, experimental studies of flow boiling of ammonia and hydrocarbons are addressed. Then, the prediction methods for flow boiling heat transfer, two-phase pressure drops and flow patterns are described. Next, comparisons of four flow boiling heat transfer and four two-phase pressure drop methods to the experimental data in smooth tubes derived from the available studies are presented. In addition, comparison of flow patterns to a flow map is presented. Based on the comparisons and analysis, recommendations on these methods are given. Furthermore, research needs on flow boiling and two-phase flow of ammonia and hydrocarbons have been identified. It is suggested that more experimental data be obtained through well conducted experiments and new prediction methods or modified ones based on the available methods be made for ammonia and hydrocarbons. In addition, the effect of oil on ammonia and hydrocarbon flow boiling and two-phase flow should be studied in order to have conclusive evidence of its effect.  相似文献   

5.
Nucleate boiling heat transfer coefficients (HTCs) of binary and ternary mixtures composed of HFC32, HFC125, and HFC134a on a horizontal smooth tube of 19.0 mm outside diameter were measured. A cartridge heater was used to generate uniform heat flux on the tube. Data were taken in the order of decreasing heat flux from 80 kW m−2 to 10 kW m−2 with an interval of 10 kW m−2 in the pool temperature at 7 °C. HTCs of nonazeotropic mixtures of HFC32/HFC134a, HFC125/HFC134a, and HFC32/HFC125/HFC134a showed a reduction of HTCs as much as 40% from the ideal values while the near azeotropic mixture of HFC32/HFC125 did not show the reduction. Four of the well known correlations were compared against the present data for binary mixtures. Stephan and Körner's and Schlünder's correlations yielded a good agreement with a deviation of less than 10% but they can not be easily extended to multi-component mixtures of more than three components. A new correlation was developed utilizing only the phase equilibrium data and physical properties. A regression analysis was carried out to account for the reduction of HTCs and the final correlation, which can be easily extended to multi-component mixtures of more than three components, yielded a deviation of 7% for all binary and ternary mixtures.  相似文献   

6.
This paper investigates the effect that the bulk lubricant concentration has on the non-adiabatic lubricant excess surface density on a roughened, horizontal flat pool-boiling surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for pure R134a and three different mixtures of R134a and a polyolester lubricant (POE). A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of an R134a/POE lubricant mixture on a test surface. The lubricant is preferentially drawn out of the bulk refrigerant/lubricant mixture by the boiling process and accumulates on the surface in excess of the bulk concentration. The excess lubricant resides in an approximately 40 μm layer on the surface and influences the boiling performance. The lubricant excess surface density measurements were used to modify an existing dimensionless excess surface density parameter so that it is valid for different reduced pressures. The dimensionless parameter is a key component for a refrigerant/lubricant pool-boiling model given in the literature. In support of improving the boiling model, both the excess measurements and heat transfer data are provided for pure R134a and three R134a/lubricant mixtures at 277.6 K. The heat transfer data show that the lubricant excess layer causes an average enhancement of the heat flux of approximately 24% for the 0.5% lubricant mass fraction mixture relative to pure R134a heat fluxes between 5 and 20 kW/m2. Conversely, both 1 and 2% lubricant mass fraction mixtures experienced an average degradation of approximately 60% in the heat flux relative to pure R134a heat fluxes between approximately 4 and 20 kW/m2. This study is an effort toward generating data to support a boiling model to predict whether lubricants degrade or improve boiling performance.  相似文献   

7.
In a flooded evaporator of an ammonia vapor-compression refrigeration system, boiling commonly takes place with ammonia mixed with compressor lubricant and subjected to a vapor quality at the inlet of the evaporator. In the present study, flooded boiling tests of ammonia on an enhanced tube under simultaneous influence of a miscible lubricant and inlet quality were conducted. The results suggest that the boiling heat transfer coefficient increases with both saturation temperature and heat flux. The coefficient slightly increases or does not significantly vary with the inlet quality. The coefficient in general is decreased by adding lubricant to the refrigerant, but the coefficient does not necessarily decrease as the lubricant concentration increases. The lubricant effect is generally more significant than the inlet quality effect. A correlation was developed based on the present data for flooded boiling of lubricant/ammonia mixture on an enhanced horizontal tube under the influence of inlet quality.  相似文献   

8.
Nuclate pool boiling heat transfer coefficients (HTCs) of HCFC123, CFC11, HCFC142b, HFC134a, CFC12, HCFC22, HFC125 and HFC32 on a horizontal smooth tube of 19.0 mm outside diameter have been measured. The experimental apparatus was specially designed to accomodate high vapor pressure refrigerants such as HFC32 and HFC125 with a sight glass. A cartridge heater was used to generate uniform heat flux on the tube. Data were taken in the order of decreasing heat flux from 80 to 10 kW m−2 with an interval of 10 kW m−2 in the pool of 7 °C. Test results showed that HTCs of HFC125 and HFC32 were 50–70% higher than those of HCFC22 while HTCs of HCFC123 and HFC134a were similar to those of CFC11 and CFC12 respectively. It was also found that nucleate boiling heat transfer correlations available in the literature were not good for certain alternative refrigerants such as HFC32 and HCFC142b. Hence, a new correlation was developed by a regression analysis taking into account the variation of the exponent to the heat flux term as a function of reduced pressure and some other properties. The new correlation showed a good agreement with all measured data including those of new refrigerants of significantly varying vapor pressures with a mean deviation of less than 7%.  相似文献   

9.
This paper presents pool boiling heat transfer data for 10 different R123/hydrocarbon mixtures. The data consisted of pool boiling performance of a GEWA-T surface for pure R123 and for 10 dilute solutions of five different hydrocarbons: (1) pentane, (2) isopentane, (3) hexane, (4) cyclohexane, and (5) heptane with R123. The heat flux and the wall superheat were measured for each fluid at 277.6 K. A maximum (19±3.5)% increase over the pure R123 heat flux was achieved with the addition of 0.5% mass isopentane to R123. Other mixtures of isopentane, pentane, hexane, and cyclohexane with R123 exhibited smaller maximums than that of the R123/isopentane (99.5/0.5) mixture. Presumably, a layer enriched in hydrocarbon at the heat transfer surface caused the heat transfer enhancement. Conversely, an R123/heptane (99.5/0.5) mixture and an R123/cylcohexane (99.5/0.5) mixture exhibited only degradations with respect to the pure component performance for all test conditions. Several characteristics of the hydrocarbons were examined to determine their influence on the boiling heat transfer performance: molecular weight, molecular structure, composition, surface tension, and vapor pressure.  相似文献   

10.
This paper outlines the framework of a semi-theoretical model for predicting the pool boiling heat transfer of refrigerant/lubricant mixtures on a roughened, horizontal, flat pool-boiling surface. The predictive model is based on the mechanisms involved in the formation of the lubricant excess layer that exists on the heat transfer surface. The lubricant accumulates on the surface in excess of the bulk concentration via preferential evaporation of the refrigerant from the bulk refrigerant/lubricant mixture. As a result, excess lubricant resides in a thin layer on the surface and influences the boiling performance, giving either an enhancement or degradation in heat transfer. A dimensionless excess layer parameter and a thermal boundary layer constant were derived and fitted to data in an attempt to generalize the model to other refrigerant/lubricant mixtures. The model inputs include transport and thermodynamic refrigerant properties and the lubricant composition, viscosity, and critical solution temperature with the refrigerant. The model predicts the boiling heat transfer coefficient of three different mixtures of R123 and lubricant to within ±10%. Comparisons of heat transfer predictions to measurements for 13 different refrigerant/lubricant mixtures were made, including two different refrigerants and three different lubricants.  相似文献   

11.
A study on the prediction of heat transfer coefficient and pressure drop of refrigerant mixtures is reported. Heat transfer coefficients and pressure drops of prospective mixtures to replace R12 and R22 are predicted on the same cooling capacity basis assuming evaporation in horizontal tubes. Results indicate that nucleate boiling is suppressed at qualities greater than 20% for all mixtures, and evaporation becomes the main heat transfer mechanism. For the same capacity, some mixtures containing R32 and R152a show 8–10% increase in heat transfer coefficients. Some mixtures with large volatility difference exhibit as much as 55% reduction compared to R12 and R22, caused by mass transfer resistance and property degradation due to mixing (32%) and reduced mass flow rates (23%). Other mixtures with moderate volatility difference exhibit 20–30% degradation due mainly to reduced mass flow rates. The overall impact of heat transfer degradation, however, is insignificant if major heat transfer resistance exists in the heat transfer fluid side (air system). If the resistance in the heat transfer fluid side is of the same order of magnitude as that on the refrigerant side (water system), considerable reduction in overall heat transfer coefficient of up to 20% is expected. A study of the effect of uncertainties in transport properties on heat transfer shows that transport properties of liquid affect heat transfer more than other properties. Uncertainty of 10% in transport properties causes a change of less than 6% in heat transfer prediction.  相似文献   

12.
This paper presents an overview of the flow boiling heat transfer characteristics and the special thermo-physical properties of CO2 at low temperatures (down to −30 °C). Subsequently, the boiling heat transfer of CO2 at low temperatures is experimentally investigated in a horizontal tube with inner diameter of 4.57 mm. Due to the large surface tension, the boiling heat transfer coefficient of CO2 is found to be much lower at low temperatures but it increases with vapour quality (until dryout), which is contrary to the trend at high temperatures around 0 °C. None of the empirical correlations from open literature were able to predict the boiling heat transfer coefficient for CO2 in good agreement with the experimental data, suggesting the need for further research in this area.  相似文献   

13.
Based on experimental data for R134a, the present work deals with the development of a prediction method for heat transfer in herringbone microfin tubes. As is shown in earlier works, heat transfer coefficients for the investigated herringbone microfin tube tend to peak at lower vapour qualities than in helical microfin tubes. Correlations developed for other tube types fail to describe this behaviour. A hypothesis that the position of the peak is related to the point where the average film thickness becomes smaller than the fin height is tested and found to be consistent with observed behaviour. The proposed method accounts for this hypothesis and incorporates the well-known Steiner and Taborek correlation for the calculation of flow boiling heat transfer coefficients. The correlation is modified by introducing a surface enhancement factor and adjusting the two-phase multiplier. Experimental data for R134a are predicted with an average residual of 1.5% and a standard deviation of 21%. Tested against experimental data for mixtures R410A and R407C, the proposed method overpredicts experimental data by around 60%. An alternative adjustment of the two-phase multiplier, in order to better predict mixture data, is discussed.  相似文献   

14.
Although ammonia has been used for decades as a refrigerant of choice for selected large- and small-scale applications, no formal database is available on heat transfer of ammonia. A critical review of the published literature on heat transfer of ammonia is provided in this paper. The available correlations for in-tube and external boiling/evaporation and condensation heat transfer of ammonia are discussed and evaluated where possible. Supported by the findings of this effort, research areas of relevance that can contribute to expanded use of ammonia as an environmentally friendly refrigerant are suggested.  相似文献   

15.
This paper describes the influence of a low viscosity polyolester based lubricating oil on the pool boiling heat transfer of the refrigerant R507. The pool boiling heat transfer coefficients for this refrigerant–oil mixture are measured on a smooth tube and on an enhanced tube. The investigation is made for oil mass fractions up to 10% and for saturation temperatures between −28.6°C and +20.1°C. For the smooth tube the heat transfer increases for increasing oil mass fractions up to 3% at lower saturation temperatures. At higher saturation temperatures the heat transfer decreases for increasing oil mass fractions for both tubes. For oil mass fractions greater than 1% at the higher saturation temperatures a range of decreasing heat transfer coefficient is found for increasing heat flux. The effect is caused by the different miscibility of the oil and the components of the refrigerant mixture.  相似文献   

16.
The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule–Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen–hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.The present study aims to assess the existing methods for prediction of flow boiling heat transfer coefficients. Many correlations are evaluated against available experimental data of flow boiling of refrigerant mixtures. Silver-Bell-Ghaly correlation and Granryd correlation are found to be more suitable to estimate local heat transfer coefficients. A modified Granryd correlation is recommended for further use.  相似文献   

17.
This paper investigates the effect that bulk lubricant concentration has on the non-adiabatic lubricant excess surface density on a roughened, horizontal flat (plain) pool-boiling surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for pure R123 and three different mixtures of R123 and a naphthenic mineral oil. A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of a R123/lubricant mixture on a test surface. The fluorescent technique was used to measure the effect of bulk lubricant concentration on the lubricant excess layer during refrigerant/lubricant mixture boiling. The refrigerant preferentially boils, thus, concentrating and accumulating the lubricant on the surface in excess of the bulk concentration. The excess lubricant resides in a very thin layer on the surface and influences the boiling performance. Accordingly, the ability to measure the effect of bulk lubricant composition on the lubricant excess density and in turn the effect on the heat transfer would lead to a fundamental understanding of the mechanism by which lubricants can degrade or improve boiling performance. In support of this effort, heat transfer data are provided for pure R123 and three R123/lubricant mixtures at 277.6 K. For heat fluxes between approximately 25 to 45 kW/m2, an average enhancement of the heat flux of 9 and 5% was achieved for the 0.5 and 1% lubricant mass fractions, respectively, and an average degradation of 5% in the heat flux was obtained for the 1.8% lubricant mass fraction mixture.

Résumé

This paper investigates the effect that bulk lubricant concentration has on the non-adiabatic lubricant excess surface density on a roughened, horizontal flat (plain) pool-boiling surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for pure R123 and three different mixtures of R123 and a naphthenic mineral oil. A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of a R123/lubricant mixture on a test surface. The fluorescent technique was used to measure the effect of bulk lubricant concentration on the lubricant excess layer during refrigerant/lubricant mixture boiling. The refrigerant preferentially boils, thus, concentrating and accumulating the lubricant on the surface in excess of the bulk concentration. The excess lubricant resides in a very thin layer on the surface and influences the boiling performance. Accordingly, the ability to measure the effect of bulk lubricant composition on the lubricant excess density and in turn the effect on the heat transfer would lead to a fundamental understanding of the mechanism by which lubricants can degrade or improve boiling performance. In support of this effort, heat transfer data are provided for pure R123 and three R123/lubricant mixtures at 277.6 K. For heat fluxes between approximately 25 kW/m2 to 45 kW/m2, an average enhancement of the heat flux of 9% and 5% was achieved for the 0.5% and 1% lubricant mass fractions, respectively, and an average degradation of 5% in the heat flux was obtained for the 1.8% lubricant mass fraction mixture.  相似文献   


18.
Simulation analyses for a vapour compression heat pump cycle using nonazeotropic refrigerant mixtures (NARMs) of R22 and R114 are conducted under the condition that the heat pump thermal output and the flow rate and inlet temperatures of the heat sink and source water are given. The heat transfer coefficients of the condensation and evaporation are calculated with empirical correlations proposed by the authors. The validity of the evaluation method and the correlations is demonstrated by comparison with experimental data. The relations between the coefficient of performance (COP) and composition are shown under two conditions: (1) the constant heat transfer length of the condenser and evaporator; and (2) the constant temperature of refrigerant at the heat exchanger inlet. The COP of the NARMs is higher than that of pure refrigerant when the heat transfer lengths of the condenser and evaporator are sufficiently long.  相似文献   

19.
The objectives of this paper are to study the heat transfer characteristics for enhanced surface tubes in the pool boiling and to provide a guideline for the design conditions for the evaporator using HFC134a. The shape of tube surfaces, the wall superheat, and the saturation temperature are considered as the key parameters. Copper tubes (do = 19.05 mm) are treated with different helix angles and the saturation temperatures are controlled from 3 to 16 °C. It is found that the pool boiling heat transfer coefficient decreases with increasing the wall superheat. It is also found that boiling heat transfer coefficients for Turbo-II and Turbo-III are 1.5–3.0 times and 1.2–2.0 times higher than that for Turbo-I without the helix angle, respectively. The higher heat transfer performance from Turbo-II and Turbo-III can be explained by the “bubble detention” phenomenon on the surface without the helix angle for the Turbo-I. The experimental correlations for the pool boiling heat transfer on the present enhanced tubes without (Type I) and with the helix angle (Type II and Type III) are developed with the error bands of ±30%, respectively.  相似文献   

20.
Critical heat flux (CHF) in nucleate pool boiling of binary mixtures was newly measured with a horizontal platinum wire, 0.5 mm in diameter, and heated by DC, over the full range of concentrations. Seven mixtures were selected with the intent to cover various types of mixtures: methanol/water, ethanol/water, methanol/ethanol, ethanol/n-butanol, methanol/benzene, benzene/n-heptane and water/ethylene glycol, each in the saturated state at atmospheric pressure. Total 311 raw CHF data were obtained at 75 concentrations including pure components.Aqueous mixtures of methanol and ethanol revealed significant increase of CHF compared to either CHF linearly interpolated between pure components or CHF predicted from a single component correlation with use of the mixture properties. Three organic mixtures showed more or less the same level as an interpolated CHF, while the remaining two mixtures of methanol/benzene and water/ethylene glycol gave the reduced CHF by 20% and 50% at most, respectively. Marangoni number was introduced as a controlling variable to explain the observed increased, invariable, or reduced CHF, and an empirical correlation was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号