首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
吉昌明  路续武  邹煜 《广东化工》2012,39(13):37-39
文章针对南阳油田稠油粘度高难以开采的实际问题,在热力开采稠油的基础上,进行了过渡金属催化降粘剂的性能研究。实验探讨了反应时间、碱加量、温度等因素对稠油粘度的影响以及表面活性剂的耐高温性能,从而确定催化剂辅剂及其用量。将合成的油溶性催化剂与碱/表面活性剂进行复配并加以评价,通过正交实验优选出主剂与辅剂的最佳配比,确定稠油水热催化剂HR组成。此外,还研究了反应条件(温度、催化剂加量)对稠油改质降粘的影响。  相似文献   

2.
小洼油田特稠油降粘剂配方研究   总被引:4,自引:0,他引:4  
采用荧光法测定了辽河油田小洼油田3050井特稠油乳化HLB值。以非离子型表面活性剂、阴离子型表面活性剂为主剂,快速渗透剂为辅剂,按一定比例合成得到了水基降粘剂配方。室内实验结果表明,该降粘剂配方具有良好的乳化降粘性能(降粘率不低于98%)和配伍性能(与破乳剂),是一种较为理想的特稠油降粘用水基降粘剂。  相似文献   

3.
通过对在模拟地层水中的溶解性、降低界面张力以及乳化降粘能力的评价,研究了OP-10、OP-20、双子表面活性剂GA8-4-8以及GA12-4-12用于现河稠油的乳化降粘性能,并对稠油乳化降粘机理进行了探究。结果表明,这4种表面活性剂乳化剂在模拟地层水中均具有良好的溶解性,GA8-4-8用于现河稠油时,能达到超低界面张力,稠油降粘率都在99%以上,使得井筒流体粘度在2 000 mPa.s以内,完全可被举升到地面。因此,GA8-4-8是一种最为有效、最适合于现河稠油井筒乳化降粘的乳化剂。  相似文献   

4.
以丙烯酰胺、疏水烷基丙烯酰胺、丙烯酰胺基烷基氯化铵季铵盐和非离子聚醚丙烯酸酯四元无规共聚,合成了一种抗温耐盐型水溶性两亲聚合物稠油降粘剂,其降粘稠油的能力优于OP-10小分子表面活性剂降粘剂、普通聚合物以及聚表二元复合体系;在1 500 mg/L低使用浓度,对中低粘度稠油,无掺稀油条件下,降粘率超过98%,可完全替代掺稀油开采;对中高粘度稠油,降低稀油掺稀量70%~85%以上,降粘率超过98%,降粘后稠油体系粘度小于2 000 mPa·s。  相似文献   

5.
针对辽河油田超稠油开采过程中的难降黏问题,根据乳化降黏机理,在表面活性剂单剂及阴-非离子表面活性剂二元复配降黏体系研究的基础上,探究阴离子表面活性剂十二烷基磺酸钠(SDS)和非离子型OP-10、吐温-80三元复配体系对稠油降黏率、乳化率及乳液稳定性的影响。结果表明,阴-非离子表面活性剂三元复配体系对稠油的降黏及乳化效果,比二元复配体系的降黏及乳化效果差。因此,在采油生产中,通过增加表面活性剂的种类以提高稠油降黏效果的方法并不合适,应根据稠油类型和表面活性剂降黏的实验数据,正确选择表面活性剂的复配体系。  相似文献   

6.
以N,N'-二甲基乙二胺、2-溴乙基磺酸钠及溴代十二烷为原料合成Gemini表面活性剂,再与OP-10、重烷基苯磺酸钠进行复配,并加入碱性引发剂研制自乳化降粘体系。针对恩平18-1油田,对油样进行乳化降粘实验,最终选择Na_2CO_3作为碱性引发剂,并确定其浓度为0.5%。通过正交实验,确定Gemini表面活性剂的浓度、OP-10的浓度、重烷基苯磺酸钠的浓度分别为0.6%、0.6%、0.6%时为自乳化降粘体系的最佳配比。  相似文献   

7.
马含悦  李春福 《广州化工》2011,39(10):171-172,183
研究了不同温度、单一和复配降粘剂对河南某油田稠油的降粘效果.结果表明,稠油粘度随温度升高而降低,当温度高于60℃时,粘度随温度升高而下降缓慢,之后粘度保持在较低水平基本不变.实验确定的最佳配方为:SDS用量0.5%,OP-10用量0.3%,AES用量0.1%,助剂NaOH用量0.05%,温度40℃,此时降粘率可达98....  相似文献   

8.
HLB值方法用于稠油降黏体系的研究   总被引:1,自引:0,他引:1  
以胜利油田孤岛采油厂稠油为研究对象。将已知HLB值的表面活性剂Span 60与Tween 60复配成溶液,将溶液加入稠油中,形成乳状液后,测定其黏度η,作η与复配表面活性剂体系的HLB值的标准曲线。根据该曲线,可得到稠油最佳降黏效果时的HLB值为8.50,并能确定研制开发的天然混合羧酸盐(SDC)、十二烷基羟丙基磺基甜菜碱(DSB)、改性混合羧酸盐(FBB)以及市售的环烷酸的HLB值。对于孤岛采油厂稠油,根据其乳状液的HLB值及降黏后的黏度η数值,筛选得到廉价的稠油降黏体系配方为:w(SDC)0.45% w(环烷酸)0.55%。  相似文献   

9.
针对特超稠油粘度大,在地层难以通过搅拌的方法实现乳化的特点,实验用油选取胜利油田滨南采油厂特超稠油,借鉴了医学上自乳化释药系统的思路,进行自乳化降粘体系配方研究,通过实验对比优选出了适用于超稠油的自乳化降粘的最佳配方:0.5%Na CO3+0.6%A P S+0.6%Tw e e n 8 0+0.9%P E G,使用该降粘体系后稠油降粘率可达95%以上。同时,实验得出:特超稠油降粘率与表面活性剂的质量浓度存在正相关关系,但是当质量浓度增大到一定程度后,降粘率基本稳定无变化。  相似文献   

10.
稠油乳化降黏开采用表面活性剂的筛选   总被引:17,自引:1,他引:17  
介绍了稠油乳化降黏及筛选适合特定油品的理想稠油乳化降黏剂(目标活性剂)的基本原则和方法。综述了稠油乳化降黏用表面活性剂的类型及其常用的非离子型表面活性剂的主要类型。依据目标活性剂的两大必要性能特征参数(HLB值和PT),概述了用HLB值法及PIT法筛选目标活性剂的方法。结合现场实践提出了筛选目标活性剂的具体实验方法和步骤。  相似文献   

11.
In many emulsion systems, creaming occurs during the first stage of emulsion breakdown. To reduce the rate of creaming, emulsions having small and uniform droplets are desirable. In this work, types and HLB of nonionic surfactants, emulsification methods, and combinations of oils and nonionic surfactants were investigated in order to make stable and homogeneous emulsions. Emulsification was attained by dissolving the surfactants in the oil phases. The addition speed and volume of water to the oil phases were important factors affecting the emulsion droplet size. The change of the solute state in the process of emulsification was observed stage by stage, and the mechanism of emulsification was elucidated. Homogeneous emulsions were formed in the HLB region, showing liquid crystalline and gel phases in the emulsifying process. The addition speed of water to the oil phase was very important in forming the liquid crystalline and gel phases. Polyoxyethylene(n)sorbitan monostearate could emulsify three kinds of oils (hydrocarbon, fatty acid ester and triglyceride). Polyoxyethylene(n)alkyl ether could emulsify hydrocarbon and fatty acid ester. Polyoxyethylene(n)-monostearate could emulsify only hydrocarbon. Surfactants with proper HLB which were soluble in the oil phase and in the presence of a very small amount of water formed a stable emulsion. The solubility state of oil and surfactant was the key to making a fine emulsion.  相似文献   

12.
The primary objective of this work was to understand the dominant mechanism(s) of alkali‐surfactant‐polymer (ASP) flooding in enhancing heavy oil recovery. Chemical formulations were first optimized based on phase behavior studies. The data indicated that alkali and surfactant created a synergistic effect at the oil/water interface, which further decreased the interfacial tension (IFT) and improved the emulsification. However, it was also found that the addition of alkali was detrimental to the viscous properties of the chemical systems and caused the ultimate oil recovery to decrease. In other words, the macroscopic sweep efficiency as a result of viscosity was the primary factor determining the overall recovery of heavy oil followed by emulsification, which was verified by the phase behavior of the effluent. Based on the experimental results, we found that for this targeted heavy oil reservoir, surfactant‐polymer (SP) flooding was more appropriate than ASP flooding and it was not necessary to decrease the IFT to the ultralow level (10?3 mN/m) using alkali. Through chemical flooding, the incremental oil recovery was increased up to 27% of original oil in place, indicating the potential of this technique in heavy oil reservoirs.  相似文献   

13.
以丙烯酰胺与自制的两亲功能单体进行无规共聚,合成了两亲高分子稠油降粘剂(APVR)。通过扫描电镜、光学显微镜和测定接触角等手段对APVR在溶液中的聚集形态及其对原油的乳化性能和降粘性能进行表征和分析。结果表明,APVR乳化稠油的能力优于模拟二元复合驱、普通水解聚丙烯酰胺、模拟注入水3种体系;在浓度为600 mg/L、温度为50℃时,APVR对胜利稠油的降粘率高达96%以上。  相似文献   

14.
Emulsification of Oxidized Polyethylene Waxes with Ionic-Nonionic Emulsifier Systems The author reports on the emulsification of oxidized polyethylene waxes with varying acid values and molecular weight distributions. The emulsifier system comprised of predominantly a nonionic ethoxylated surfactant based on alkyl phenol in combination with a small amount of alkali hydroxide to which the water for emulsification was added. Emulsion properties, such as viscosity, pH-value, particle size (light transmission), and glaze of the dry films on plane surface, were used to formulate the optimum emulsifier systems. Thus, the optimum ratio of the components and the degree of ethoxylation of the nonionic surfactant were determined. Similarly, the method of emulsifying was optimized and the differences among the various existing polyethylene waxes were determined.  相似文献   

15.
唐仕  李嘉诚  牛迪  林强 《化工科技》2011,19(3):16-20
选用复配壬基酚聚氧乙烯醚非离子表面活性剂作为生物柴油的乳化剂,考察了2种壬基酚聚氧乙烯醚m(NP-6)∶m(NP-10)、复配表面活性剂HLB值、m(油)∶m(表面活性剂)、水滴加速率以及搅拌速度等因素对纳米乳液乳化性能的影响。通过实验确定了制取纳米乳液的最佳工艺条件:m(NP-6)∶m(NP-10)=6∶4,复配表面活性剂HLB值为11.88,m(油)∶m(表面活性剂)=1.6~1.8,水滴加速率在0.7mL/min以下,以及搅拌速度为700~800r/min时,在25℃下用乳化反转点法制得稳定的水包油纳米乳,此条件下纳米乳颗粒形貌为球形,粒径分布主要在20~30nm。  相似文献   

16.
简要介绍稠油乳化降粘管输的机理,并针对乳化降粘剂的选择方法进行总结概括。重点介绍了HLB法乳化剂筛选,HLB值判断,以及HLB计算方法。并从乳化降粘率、乳化剂的稳定性、乳化剂的流变性和乳化剂的破乳性能等方面进行评价O/W型乳状液,选择适配的乳化剂。  相似文献   

17.
Required hydrophile-lipophile balance (HLB) values were examined in terms of the nature of kerosene-water, both oil-in-water (O/W) and water-in-oil (W/O), emulsions formed using Span 80/Tween 80 surfactant blends. Both the nature of the emulsification method and the oil/water ratio were critical in determining the resulting emulsion type. Both high- and low-shear conditions were investigated. Under high shear, low internal phase emulsions formed using the surfactant mixtures that corresponded to the required HLB values for emulsification involving kerosene (6 for W/O and 14 for O/W). However, at low shear, high internal phase (concentrated) emulsions resulted. Furthermore, depending on the oil/water ratio, some of the high internal phase emulsions were opposite to the type expected, given the HLB of the surfactant blend used. From these results, it appears that the emulsification technique (applied shear and oil/water ratio) used can be of greater importance in determining the final emulsion type than the HLB values of the surfactants themselves.  相似文献   

18.
分析了温度、油水比和乳化降粘剂R-1,R-2的用量对河南G7412井超稠油HN降粘效果的影响,利用正交实验法研究了R-1和R-2对超稠油HN的降粘效果,两种降粘剂的最佳使用条件为:温度在70℃,用量为0.9%,油水比为4∶6,R-1的降粘率可以达到99.88%;温度在90℃,用量为0.9%,油水比为7∶3,R-2的降粘率可以达到98.92%。红外光谱结果表明,超稠油HN加入R-1后降粘效果明显是由于减少杂环或胺基形成氢键的数量,从而降低了胶质与沥青质之间的缔合度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号