首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations of the proteolipid protein (Plp) gene cause a generalized central nervous system (CNS) myelin deficit in Pelizaeus-Merzbacher disease of man and various tremor syndromes in animal models. X-linked spastic paraplegia is also due to Plp gene mutations but has a different clinical profile and more restricted pathology involving specific tracts and regions. We have shown previously that PLP overexpression in mice homozygous for a Plp transgene results in premature arrest of CNS myelination and premature death. Here, we demonstrate that a low-level increase in Plp gene expression in transgenic mice causes significant axonal degeneration and demyelination with predilection for specific tracts. Following normal motor development, aged mice develop progressive myelin loss, axonal swellings with resultant Wallerian degeneration, and marked vacuolation of the neuropil associated with ataxia, tremor, and seizures. The age of onset and severity of the phenotype is a function of Plp gene dosage. The corticospinal tracts, optic nerve, fasciculus gracilis cerebellum, and brainstem are particularly involved. Although oligodendrocyte cell bodies show little abnormality, their inner adaxonal tongue is often abnormal, suggesting a perturbation of the axon/glial interface that may underlie the axonal changes. We conclude that abnormal expression of an oligodendrocyte-specific gene can cause axonal damage, a finding that is relevant to the pathogenesis of PLP-associated disorders and probably to other myelin-related diseases.  相似文献   

2.
Although familial recurrences of Rett syndrome (RTT) comprise only approximately 1% of the reported cases, it is these cases that hold the key for the understanding of the genetic basis of the disorder. Families in which RTT occurs in mother and daughter, aunt and niece, and half sisters are consistent with dominant inheritance and variable expressivity of the phenotype. Recurrence of RTT in sisters is likely due to germ-line mosaicism in one of the parents, rather than to recessive inheritance. The exclusive occurrence of classic RTT in females led to the hypothesis that it is X-linked and may be lethal in males. In an X-linked dominant disorder, unaffected obligate-carrier females would be expected to show nonrandom or skewed inactivation of the X chromosome bearing the mutant allele. We investigated the X chromosome inactivation (XCI) patterns in the female members of a newly identified family with recurrence of RTT in a maternal aunt and a niece. Skewing of XCI is present in the obligate carrier in this family, supporting the hypothesis that RTT is an X-linked disorder. However, evaluation of the XCI pattern in the mother of affected half sisters shows random XCI, suggesting germ-line mosaicism as the cause of repeated transmission in this family. To determine which regions of the X chromosome were inherited concordantly/discordantly by the probands, we genotyped the individuals in the aunt-niece family and two previously reported pairs of half sisters. These combined exclusion-mapping data allow us to exclude the RTT locus from the interval between DXS1053 in Xp22.2 and DXS1222 in Xq22.3. This represents an extension of the previous exclusion map.  相似文献   

3.
Brainstern auditory evoked responses (BAERs) were evaluated on 10–12-year-old children (N?=?56) who had been classified as high or low reactive to unfamiliar stimuli at 4 months of age. BAER measurement was selected because high reactive infants tend to become inhibited or fearful young children, and adult introverts have a faster latency to wave V of the BAER than do extroverts. Children previously classified as high reactive at 4 months had larger wave V components than did low reactive children, a finding that possibly suggests greater excitability in projections to the inferior cofliculus. The fact that a fundamental feature of brainstem activity differentiated preadolescent children belonging to two early temperamental groups supports the value of gathering physiological data in temperament research. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
Evoked responses have not been studied in patients with acute severe hepatitis (ASH) with or without hepatic encephalopathy. This prospective study was undertaken to find out diagnostic as well as prognostic value of visual evoked responses (VER), and brain stem auditory evoked responses (BAER) in patients with ASH with or without encephalopathy. Visual evoked responses and BAER were studied in 20 patients (14 males and six females) with ASH. The patients were diagnosed as having severe hepatitis if acute hepatitis was associated with raised serum bilirubin and serum transaminases, and if they had a prothrombin time index of < 50%. After a detailed neuropsychiatric examination of each patient, the study sample was divided into two groups of 10 patients: ASH without encephalopathy (ASH-WOE), and ASH with encephalopathy (fulminant hepatic failure, FHF). The median P100 latencies of FHF patients were significantly increased compared with controls and patients in the ASH-WOE group. Abnormal P100 latencies, exceeding 95th percentile values of the controls, were present in one patient in the ASH-WOE group and six patients in the FHF group. The median interpeak latencies I-III, III-V and I-V were significantly prolonged in the FHF group. Interpeak latencies III-V were also increased significantly in patients in the ASH-WOE group. While abnormal BAER were seen frequently in both groups, VER abnormalities were largely confined to patients in the FHF group. In the FHF group, six out of 10 patients survived and exhibited clinical improvement in the status of hepatic encephalopathy. Evoked responses were repeated after 2-3 weeks of recovery in these patients and VER abnormalities showed a tendency to normalize, thereby suggesting a prognostic implication. The incidence of abnormal VER in hepatic encephalopathy complicating ASH far exceeded that of abnormal BAER. Markedly prolonged P100 latencies in FHF patients indicate poor prognosis.  相似文献   

5.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

6.
The Wiskott-Aldrich syndrome (WAS), X-linked severe combined immunodeficiency (SCIDX1), and X-linked agammaglobulinemia (XLA) are severe congenital immunodeficiencies with X-linked inheritance. Although rare, they are all associated with severe infections from early in life, and high morbidity and mortality. Female carriers of these diseases can be identified by a non-random pattern of X-chromosomal inactivation in cell lineages targeted by each gene defect. For patients with WAS, SCIDX1 or XLA, the demonstration of non random X-Chromosome inactivation in their mothers can be used to confirm clinical diagnosis. Furthermore, analysis of X-Chromosome inactivation in at risk females allows preconceptional carrier detection, thus representing an important aid in genetic counseling. For each disease we established a PCR-based, non radioactive assay at the human androgen receptor (HUMARA) locus, that allows analysis of X-Chromosome inactivation in the affected cell types and in tissue specific controls to exclude the issue of skewed X-chromosomal inactivation. In our study, 50 females with a known family history of XLA [19], WAS [18], and SCIDX1 [13],were examined. A carrier status was established in 19 females (7 XLA, 6 WAS, 6 SCIDX1) and excluded in 29 ( 11 XLA, 11 WAS, 7 SCIDX1). Only in 2 cases (4%) the assay was not informative.  相似文献   

7.
Proteolipid protein (PLP) is the major myelin protein of the CNS and is believed to have a structural role in maintaining the intraperiod line of compact myelin. An isoform, DM-20, produced by alternative splicing of exon 3B is expressed earlier than PLP in the CNS and may be involved in glial cell development. DM-20 is also present in myelin-forming and non-myelin-forming Schwann cells, olfactory nerve ensheathing cells, some glial cell lines and cardiac myocytes. Molecular studies suggest the existence of a PLP gene family with sequence similarities between molecules of different species. Such studies also lend credence to the suggestion that PLP and/or DM-20 may function as a membrane pore. Mutations in the PLP gene occur in several animal species and cause severe pleiotropic effects on myelination. In man this presents as Pelizaeus-Merzbacher disease (PMD). The phenotype of such mutants is characterized by dysmyelination with myelin of abnormal periodicity, paucity of mature oligodendrocytes and astrocytosis. Duplication of the PLP gene in transgenic animals or in one form of PMD also results in dysmyelination. X-linked spastic paraplegia (SPG2) is allelic to PMD and is associated with PLP mutations in which the levels of the DM-20 isoform are probably relatively normal. The effects of PLP gene dosage on CNS myelination can be compared in many ways to the variety of phenotypes in the PNS in hereditary neuropathies of the Charcot-Marie-Tooth type in which the peripheral myelin-22 gene is mutated.  相似文献   

8.
Osteopathia striata with cranial sclerosis (OS-CS) is a bone dysplasia characterized by longitudinal striations of the long bones and sclerosis of the craniofacial bones. Affected patients show macrocephaly, ocular hypertelorism, frontal bossing, broad nasal bridge and abnormalities of the palate. Anomalies such as hearing loss, congenital heart defect, vertebral anomalies and mental impairment have also been reported. Pedigree analysis has suggested an autosomal dominant inheritance, but a recent report of a family with significantly more affected males than females suggested the possibility of X-linked inheritance. Here we describe a new family with OS-CS (the twelfth in the literature) with four affected individuals (two males and two females) spanning three generations. The affected male in the third generation was stillborn with multiple congenital anomalies, whereas the other three affected individuals had mild features. This family may represent another example of X-linked OS-CS where the mutated gene(s) is more severe in males.  相似文献   

9.
Convergent EEG, performance, and psychometric measures of arousal were used to test predictions on H. J. Eysenck's (1967) theory. 12 introverts and 12 extraverts had their brainstem auditory evoked responses (BAERs) monitored under 3 levels of caffeine administration (0.0, 1.5, and 3.0 mg/kg) and 3 levels of task demand (resting, simple response time, and complex response time). Results revealed a decrease in the latency of Wave V of the BAER as a function of personality, with introverts evidencing significantly shorter latency of Wave V as compared with extraverts. Faster conduction times between Waves I–III and I–V were also found in introverts. Caffeine at either the 1.5 or 3.0 mg/kg level was associated with decreased latency of Wave V, compared with the placebo condition. No personality differences in subjective arousal or reaction time (RT) performance were found across any of the conditions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
The inactivation of one X chromosome in females is normally random with regard to which X is inactivated. However, exclusive or almost-exclusive inactivation of one X may be observed in association with some X-autosomal rearrangements, mutations of the XIST gene, certain X-linked diseases, and MZ twinning. In the present study, a methylation difference near a polymorphism in the X-linked androgen-receptor gene was used to investigate the possibility that nonrandom X inactivation is increases in fetuses and newborns that are associated with confined placental mosaicism (CPM) involving an autosomal trisomy. Extreme skewing was observed in 7 (58%) of 12 cases with a meiotic origin of the trisomy, but in none of 10 cases examined with a somatic origin of the trisomy, and in only 1 (4%) of 27 control adult females. In addition, an extremely skewed X-inactivation pattern was observed in 3 of 10 informative cases of female uniparental disomy (UPD) of chromosome 15. This may reflect the fact that a proportion of UPD cases arise by "rescue" of a chromosomally abnormal conceptus and are therefore associated with CPM. A skewed pattern of X inactivation in CPM cases is hypothesized to result from a reduction in the size of the early-embryonic cell pool, because of either poor early growth or subsequent selection against the trisomic cells. Since approximately 2% of pregnancies detected by chorionic villus sampling are associated with CPM, this is likely a significant contributor to both skewed X inactivation observed in the newborn population and the expression of recessive X-linked diseases in females.  相似文献   

11.
Mutations in the human gene for the myelin recognition molecule protein zero (P0) give rise to severe and progressive forms of dominantly inherited peripheral neuropathies. We have previously reported that mice homozygous for a null mutation in P0 have severely hypomyelinated nerves ten weeks after birth. Here we show hypomyelination already exists at day four with subsequent demyelination and impaired nerve conduction. Furthermore, heterozygous mutants show normal myelination, but develop progressive demyelination after four months of age. Thus, the pathology of homo- and heterozygous P0 mutants resembles that of the severely affected Déjérine-Sottas and the more mildly affected Charcot-Marie-Tooth type 1B patients, respectively.  相似文献   

12.
13.
A cell culture preparation equipped with stimulating electrodes was used to investigate whether action potential activity can influence myelination of mouse dorsal root ganglia axons by Schwann cells. Myelination was reduced to one-third of normal by low-frequency impulse activity (0.1 Hz), but higher-frequency stimulation (1 Hz) had no effect. The number of Schwann cells and the ultrastructure of compact myelin were not affected. The frequency of stimulation that inhibited myelination decreased expression of the cell adhesion molecule L1, and stimulation under conditions that prevented the reduction in L1 blocked the effects on myelination. This link between myelination and functional activity in the axon at specific frequencies that change axonal expression of L1 could have important consequences for the structural and functional relationship of myelinating axons.  相似文献   

14.
Developmental changes in relative amounts of peripheral nerve proteins and glycoproteins have been correlated with the degree of morphological myelination at various ages during the first 25 postnatal days in rat sciatic nerve. At birth there is virtually no major myelin glycoprotein (P0), but there is a protein which migrates to the same point on sodium dodecyl sulphate (SDS) polyacrylamide gels as the small myelin basic protein (P2). During the time myelin is being formed in the nerve, the P0 protein increases and the P2 protein appears to decrease in relative amount in the nerve. The accumulation of P0 protein in the nerve correlates extremely well with the degree of myelination in sciatic nerve. At 4-6 days postnatal, smooth membrane profiles are observed which are located within axons and in the inner Schwann cell cytoplasm. Such profiles are also observed to fuse with the axolemma-Schwann cell interface. The profiles may represent membrane material being added to or deleted from the axolemma or myelin during myelination.  相似文献   

15.
Myelin-associated glycoprotein (MAG) was postulated to play an important role in myelination. However, we showed previously that MAG null mutants exhibited no gross abnormality in myelination. Ultrastructural studies revealed subtle alterations in periaxonal organisation, indicating a restricted structural role for MAG in the formation and maintenance of periaxonal structures (Li et al., 1994). Here we show that myelination in MAG deficient mice is not as finely controlled as it is in wild type mice. The abnormalities manifest themselves as a decrease in the proportion of myelinated axons and a reciprocal increase in the proportion of unmyelinated axons in mutants' optic nerves. In addition, dysregulated myelination is occasionally observed in the form of multiply myelinated fibres, grouping of myelinated axons and myelin debris by a large myelin sheath, redundant myelin loops and, very rarely, massive myelin surrounding relatively small axons. Thus, in the absence of MAG, some glial cells seem unable to determine when, where and how much myelin should be laid down. These data support the notion of MAG being a glial recognition/adhesion molecule. A model is proposed regarding the roles MAG could play in the formation and maintenance of myelin structure.  相似文献   

16.
2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is highly enriched in myelin-forming cells where it is concentrated at the cytoplasmic side of all surface membranes except those of compact myelin. Previous studies have provided evidence that CNP is functionally involved in migration or expansion of membranes during myelination. This hypothesis is supported, in part, by the production of aberrant myelin membranes in transgenic mice that have a 6-fold increase in CNP expression. In addition, many myelin lamellae in these CNP-overexpressing mice lacked major dense lines (MDLs). The purpose of the present study was to determine if CNP overexpression altered: (1) oligodendrocyte and myelin membrane production during early stages of myelination, and (2) the ultrastructural distribution of CNP and myelin basic protein (MBP) in myelin membranes. We identified aberrant membrane expanses that extended from premyelinating oligodendrocyte processes, the periaxonal membrane, and the contact point between oligodendrocyte processes and myelin internodes. Myelin membranes without MDLs were deficient in MBP and enriched in CNP. These data support a functional role for CNP during oligodendrocyte membrane expansion and indicate, for the first time, that CNP may help target MBP to compact myelin.  相似文献   

17.
The ability of isolated mature post-myelination ovine oligodendrocytes to myelinate was investigated in tissue culture and in vivo. In culture, although the cells adhered preferentially to rat dorsal root ganglia (DRG) axons, sent out processes that encircled and wrapped them, proliferated, and synthesised myelin proteins (MBP), no myelination was found. This failure to find myelination occurred despite the fact that the oligodendrocytes both in the present experiments and in previous studies elaborated membranous structures that have been shown chemically and structurally to be similar to normal central nervous system myelin. These findings contrasted with those seen when neonatal rodent glial cells were added to similar DRG neuron cultures, in which myelination readily occurred. When the same adult ovine oligodendrocytes were transplanted into the brains of Shiverer mice, normal compact myelin was formed, proving that the cells were capable of myelination and suggesting that cross-species incompatibility was probably not a major factor in the lack of myelination in vitro. It is possible that the failure of ovine oligodendrocytes to myelinate DRG axons is due either to the relatively low number of supporting glial cells, such as astrocytes or microglia which may be necessary for satisfactory myelination, or that some other factor in the microenvironment is lacking; in any event, these results point to the complexity of oligodendrocyte-axon interactions. It is clear that each of the events, from adherence to proliferation to wrapping and the myelin compaction may be under the control of a different signal and may operate through a distinct mechanism, even though each process is dependent on the other. The results also point to the potential usefulness of this model system for deciphering such signals and mechanisms.  相似文献   

18.
To elucidate the role of insulin-like growth factor 1 (IGF1) in the normal development of brain myelination, we used behavioral, biochemical, and histological analyses to compare the myelination of brains from Igf1(-/-) and wild-type (WT) littermate mice. The studies were conducted at postnatal day 40, at which time the Igf1(-/-) mice weighed approximately 66% less than wild-type mice. However, the Igf1(-/-) brain weight was only reduced by approximately 34%. Formal neurological testing showed no sign of central or peripheral myelinopathy in Igf1(-/-) mice. Myelin composition was not significantly different, and myelin concentration, normalized to brain weight or protein, was equal in Igf1(-/-) and WT mice. Likewise, concentrations of myelin-specific proteins (MBP, myelin proteolipid protein, MAG, and 2',3'-cyclic nucleotide,3'-phosphodiesterase) were not significantly different in Igf1(-/-) and WT mice. The myelin-associated lipids galactocerebroside and sulfatide were modestly reduced in Igf1(-/-) brains. Regional oligodendrocyte populations and myelin staining patterns were comparable in Igf1(-/-) and WT brains, with the notable exception of the olfactory system. The Igf1(-/-) olfactory bulb was profoundly reduced in size and was depleted of mitral neurons and oligodendrocytes, and its efferent tracts were depleted of myelin. In summary, this study shows that myelination of the Igf1(-/-) brain is proportionate to its neuronal composition. Where projection neurons are preserved despite the deletion of IGF1, as in the cerebellar system, oligodendrocytes and myelination are indistinguishable from wild type. Where projection neurons are depleted, as in the olfactory bulb, oligodendrocytes are also depleted, and myelination is reduced in proportion to the reduced projection neuron mass. These data make a strong case for the primacy of axonal factors, not including IGF1, in determining oligodendrocyte survival and myelination.  相似文献   

19.
Transections of the chicken spinal cord after the developmental onset of myelination at embryonic day (E) 13 results in little or no functional regeneration. However, intraspinal injection of serum complement proteins with complement-binding GalC or 04 antibodies between E9-E12 results in a delay of the onset of myelination until E17. A subsequent transection of the spinal cord as late as E15 (i.e., during the normal restrictive period for repair) results in neuroanatomical regeneration and functional recovery. Utilizing a similar immunological protocol, we evoked a transient alteration of myelin structure in the posthatching (P) chicken spinal cord, characterized by widespread "unravelling" of myelin sheaths and a loss of MBP immunoreactivity (myelin disruption). Myelin repair began within 7 d of cessation of the myelin disruption protocol. Long term disruption of thoracic spinal cord myelin was initiated after a P2-P10 thoracic transection and maintained for > 14 d by intra-spinal infusion of serum complement proteins plus complement-binding GalC or 04 antibodies. Fourteen to 28 d later, retrograde tract tracing experiments, including double-labeling protocols, indicated that approximately 6-19% of the brainstem-spinal projections had regenerated across the transection site to lumbar levels. Even though voluntary locomotion was not observed after recovery, focal electrical stimulation of identified brainstem locomotor regions evoked peripheral nerve activity in paralyzed preparations, as well as leg muscle activity patterns typical of stepping in unparalyzed animals. This indicated that a transient alteration of myelin structure in the injured adult avian spinal cord facilitated brainstem-spinal axonal regrowth resulting in functional synaptogenesis with target neurons.  相似文献   

20.
Non-specific X-linked mental retardation (MRX) is a very common disorder which affects approximately 1 in 600 males. Despite this high frequency, little is known about the molecular defects underlying this disorder, mainly because of the clinical and genetic heterogeneity which is evident from linkage studies. Recently, a collaborative study using the candidate gene approach demonstrated the presence of mutations in GDIalpha, a Rab GDP-dissociation inhibitor encoded by a gene localized in Xq28, associated with non-specific mental retardation. GDIalpha is mainly a brain-specific protein that plays a critical role in the recycling of Rab GTPases involved in membrane vesicular transport. The study presented here was designed to assess the prevalence of mutations in the GDIalpha in mentally retarded patients and to discuss the clinical phenotypes observed in affected individuals. Mutation screening of the whole coding region of the GDIalpha gene, using a combination of denaturing gradient gel electrophoresis and direct sequencing, was carried out in 164 patients found negative for expansions across the FRAXA GCC repeat. In addition to the nonsense mutation recently reported in MRX48, we have identified a novel missense mutation in exon 11 of the GDIalpha gene in one familial form of non-specific mental retardation. In this family (family R), all affected males show moderate to severe mental retardation, and the X-linked semidominant inheritance is strongly suggested by the severe phenotypes in males with respect to mildly affected females or unaffected obligatory carriers. This study showed that the prevalence of GDIalpha mutations in non-specific mental retardation could be estimated to be 0.5-1%, and molecular diagnosis and genetic counselling in some cases of non-specific mental handicap can now be provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号