首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer blends were prepared by melt blending technique using poly vinyl chloride (PVC) and poly(butylene adipate-co-terephthalate) (PBAT). Different ratios of the blends were studied to investigate their mechanical, thermal and morphological properties. The FTIR spectrum indicated a slight increase of frequencies at C = O peak from 1714 to 1718 cm-1 indicating a chemical interaction between C = O of PBAT and α-hydrogen of PVC. The tensile properties of PVC/PBAT blends highest at weight ratio of 50/50. The dynamic mechanical analysis (DMA) result proves that PVC and PBAT formed a miscible system with one glass transition temperature (Tg). The incorporation of PBAT results in a gradual decrease of the viscosity (loss modulus) and an increase of elasticity (storage modulus). The thermal properties of blend show the decomposition temperature of PVC in the blend decrease with the addition of PBAT. Scanning electron micrograph shows good interfacial adhesion on the tensile fractured surface of PVC/PBAT blend, which played important roles in enhancing the mechanical properties (strength and modulus).  相似文献   

2.
Various poly(vinyl chloride) (PVC)/feather keratin (FK) blends were prepared via a solution blending method in the presence of N,N‐dimethylformamide as a solvent. The miscibility of the blends was studied with different analytical methods, such as dilute solution viscometry, differential scanning calorimetry, refractometry, and atomic force microscopy. According to the results obtained from these techniques, it was concluded that the PVC/FK blend was miscible in all the studied compositions. Specific interactions between carbonyl groups of the FK structure and hydrogen from the chlorine‐containing carbon of the PVC were found to be responsible for the observed miscibility on the basis of Fourier transform infrared spectroscopy. Furthermore, increasing the FK content in the blends resulted in their miscibility enhancement. The thermal stability of the samples, as an important characteristic of biobased polymer blends, was finally examined in terms of their FK weight percentage and application temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Polymer Bulletin - In this work, electrospun fibers of poly(butylene adipate-co-terephthalate) (PBAT) and poly(N-isopropylacrylamide) (PNIPAAm) blends, PBAT/PNIPAAm, with different mass ratios,...  相似文献   

4.
Blends of Poly(methyl methacrylate) (PMMA)/Poly(vinyl chloride) (PVC) and Poly(vinyl chloride) (PVC)/Polystyrene (PS) of different compositions were prepared by solution casting technique. The blends were characterized using Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and Positron Lifetime Spectroscopy. DSC data were found to be inadequate to describe whether PMMA/PVC blends are miscible or not, possibly because of the small gap in their glass transition temperatures. On the other hand, PVC/PS blends were clearly found to be immiscible by DSC. FTIR results for PMMA/PVC indicate the possible interactions between the carbonyl group of PMMA and α‐hydrogen of PVC. Free volume data derived from Positron lifetime measurements showed that the PMMA/PVC blends to be miscible in low PVC concentration domain. For the first time, the authors have evaluated the hydrodynamic interaction parameter α, advocated by Wolf and Schnell, Polymer, 42, 8599 (2001), to take into account the friction between the component molecules using the free volume data. This parameter (α) has a high value (?57) at 10 wt% of PVC, which could be taken to read miscibility for PMMA/PVC blends to be high. In the case of PVC/PS blends, the positron results fully support the DSC data to conclude the blends to be immiscible throughout the range of concentration. As expected, the hydrodynamic interaction parameter α does not show any change throughout the concentration in PVC/PS blends, further supporting the idea that α is another suitable parameter in the miscibility study of polymer blends. POLYM. ENG. SCI., 46:1231–1241, 2006. © 2006 Society of Plastics Engineers  相似文献   

5.
Blends of poly(vinyl chloride) (PVC) with different ratios of chlorinated polyethylene (CPE) were degradated by the thermogravimetric method under dynamic conditions (50–600°C) in an inert atmosphere. The effect of the miscibility and composition of the PVC/CPE blends on the thermal stability were investigated. DSC curves of the blends show neither a shift of the PVC glass transition temperature nor a shift of the CPE melting temperature, which means that these blends are heterogeneous. The characteristics of the TG curves were determined, some of which (T1%,T5%, Δm1) can be used as indicators of the thermal stability of the blend. The apparent activation energy of PVC dehydrochlorination in the blends was also calculated. Comparison of the experimental TG curves and TG curves predicted by the additivity rule indicates the existence of the components' interaction in the PVC/CPE blends. The addition of CPE improves the thermal stability of PVC for all the investigated blends in the temperature range where αcalc is greater than αexp. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 166–172, 2000  相似文献   

6.
7.
A poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) (80/20 w/w) polymer blend was studied by mechanical spectroscopy. Two relaxations can be distinguished: in the glassy state, a very large secondary relaxation in the range of 100 K to 325 K which results from the combination of secondary relaxations of PVC and PMMA; and only one main relaxation at 364 K associated to the glass rubber transition. The relaxation spectrum in the range of the β relaxation has been described by a relaxation time distribution function based upon a Gaussian function and a series-parallel model. The α relaxation was studied by means of a theoretical approach for the nonelastic deformation of polymers. We found that the miscibility of this blend appears to be a function of the observation scale: the PVC/PMMA blend is heterogeneous at the scale of molecular movements involved for the β relaxation process but homogeneous at the scale of the chain segments responsible for the α relaxation dynamics. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
考察了2,3-环氧丙氧乙基笼型倍半硅氧烷(G-POSS)对聚氯乙烯(PVC)共混物力学和热性能的影响。结果表明:加入G-POSS可缩短PVC的塑化时间;100 g PVC中G-POSS用量不超过7 g时共混物的拉伸强度得到提高;加入G-POSS可改善PVC的耐热性能,G-POSS用量为13 g时,共混物的维卡软化温度和初始分解温度分别提高12,27℃。  相似文献   

9.
The properties of poly(vinyl chlorlde)/ehlorinated poly(vinyl chloride) (61.6 percent C1) blends, prepared by melt and solution blending, were measured by various tests. Based on the chlorinated poly(vinyl chloride) (CPVC) composition, percent chlorine, and mole percent CC12 groups, these blends were expected to show intermediate properties between miscible and immiscible systems. Indicative of miscible behavior were the single glass transition temperatures over the entire composition range for both melt and solution blended mixtures. A single phase was also indicated by transmission electron microscopy. However, the yield stress showed a minimum value less than either of the pure components in the 50 to 75 percent CPVC range, which is characteristic of two-phased systems. Specific volume, glass transition temperature, and heat distortion temperature were linear with binary composition. The storage modulus showed a small maximum, suggesting a weak interaction between the two miscible polymers. Heats of melting for the residual PVC crystallinity were also less than expected from linear additivity. At 160°C and 210°C, the logarithm of the complex viscosity was essentially linear with volume fraction of CPVC, except for a very slight decrease in the 50 to 75 percent CPVC range, which may have been a result of lower crystallinity. At 140°C, the complex viscosity of the CPVC was less than that of PVC owing to the higher crystallinity of the latter. The viscosities were similar at 160°C, but at 210°C, where most of the crystallites had melted, the complex viscosity of the CPVC was higher because of its higher glass transition temperature.  相似文献   

10.
Bio-composites consisting of poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC) and epoxy chain extender ADR 4468 were fabricated via melt blending using a torque rheometer. The relationship of the torque, melt viscosity, and molecular weight of the bio-composites was established via polymeric liquid theory to estimate the real-time chain extension reaction rate under different ADR contents. At the meantime, rheological behavior, thermal and mechanical properties, morphologies, gas barrier properties of the PBAT/PPC/ADR bio-composites were systematically characterized. The corresponding results revealed that the water vapor transmission rate (WVTR) reduced by 50% under 30 phr (parts per hundreds of resin) PPC content. The addition of ADR is beneficial to improve the mechanical properties, thermal stability and phase dispersion of PBAT/PPC without affecting the water barrier property. With 3 phr ADR, the tensile stress and elongation at break were increased from 19.5 MPa and 1184% to 26.9 MPa and 1443%, respectively. In addition, the data of the torque rheometer revealed that the chain extension reaction rate and the melt viscosity was increased with the increasing ADR content, but the reaction rate was reduced with the excessive viscosity.  相似文献   

11.
Five kinds of polyepichlorohydrin (PECH) of different molecular weights were synthesized and characterized by gel permeation chromatography (GPC). Mechanical blending was used to mix PECH and poly(vinyl chloride) (PVC) together. The blends of different PVC/PECH ratios were characterized by thermogravimetric analysis (TGA), tensile tests, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). TGA results show the thermal stability of PVC/PECH blends is desirable. Tensile tests indicate elongation at break is raised by increasing both the amount and the molecular weight of PECH. DSC is used to determine the glass transition temperature of PECH, and a quite low Tg is obtained. DMA results indicate that PECH has a perfect compatibility with PVC, when PECH concentration is below 20 wt %. There is only one peak in each tan δ curve, and the corresponding Tg decreases as PECH amount increases. However, above 20 wt %, phase separation takes place. The molecular weight of PECH also has a great influence on the glass transition temperature of the blends. This study shows that PECH is an excellent plasticizer for PVC, and one can tailor the glass transition temperature and tensile properties by changing the amount and the molecular weight of PECH. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend.  相似文献   

13.
Plasticizer migration studies dealing with poly(vinyl chloride) (PVC) sheets and liquid surrounding media revealed two parallel phenomena, migration of plasticizer and liquid penetration, that take place simultaneously. The present work was focused on correlating the structural differences of the PVC material with the aforementioned processes. The plasticizer and the liquid medium used were dioctyl phthalate and isopropanol, respectively. Emphasis was placed on any rearrangement of the polymer morphology occurring when elevated test temperatures were employed for a relatively long period of time (crystallization). The result was that the PVC structure seemed to become more compact, forcing the liquid medium that had already penetrated to come out. Furthermore, these experiments showed that plasticizer migration and liquid penetration were related to the polymer structure. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1780–1786, 2001  相似文献   

14.
In this study, the poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate)(PBAT) blend is investigated to improve rheological and mechanical performances of PBAT based on rheological, mechanical, and thermal behavior analyses. The multi-step mixing method is developed to fabricate the blend with non-spherical morphology. In the multi-step mixing method, blends with a wide composition range (25/75–75/25) are mixed with additional PBAT at a mixing temperature between the melting temperatures of PBAT and PLA to produce the PBAT blend embedded with non-spherical PLA particles (10 wt%). The embedding of non-spherical PLA particles in PBAT increases the resistance against deformation, resulting in strain hardening behavior and an increase in the yield strength as well as the tear resistance of the PBAT. The presence of stiff PLA particles enhances the crystallization behavior of PBAT, meaning that polymer chains may interpenetrate. The findings of this study suggest that the multi-step mixing method is beneficial for embedding non-spherical PLA particles into a PBAT matrix, which in turn facilitates the maintenance of good interfacial adhesion to increase the melt strength, yield strength, and tear resistance.  相似文献   

15.
Zhaobin Qiu  Wantai Yang 《Polymer》2006,47(18):6429-6437
Biodegradable crystalline poly(butylene succinate) (PBSU) can form miscible polymer blends with amorphous poly(vinyl phenol) (PVPh). The isothermal crystallization kinetics and morphology of neat and blended PBSU with PVPh were studied by differential scanning calorimetry (DSC), optical microscopy (OM), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS) in this work. The overall isothermal crystallization kinetics of neat and blended PBSU was studied with DSC in the crystallization temperature range of 80-88 °C and analyzed by applying the Avrami equation. It was found that blending with PVPh did not change the crystallization mechanism of PBSU, but reduced the crystallization rate compared with that of neat PBSU at the same crystallization temperature. The crystallization rate decreased with increasing crystallization temperature, while the crystallization mechanism did not change for both neat and blended PBSU irrespective of the crystallization temperature. The spherulitic morphology and growth were observed with hot stage OM in a wide crystallization temperature range of 75-100 °C. The spherulitic morphology of PBSU was influenced apparently by the crystallization temperature and the addition of PVPh. The linear spherulitic growth rate was measured and analyzed by the secondary nucleation theory. Through the Lauritzen-Hoffman equation, some parameters of neat and blended PBSU were derived and compared with each other including the nucleation parameter (Kg), the lateral surface free energy (σ), the end-surface free energy (σe), and the work of chain folding (q). Blending with PVPh decreased all the aforementioned parameters compared with those of neat PBSU; however, the decrease extent was limited. WAXD result showed that the crystal structure of PBSU was not modified after blending with PVPh. SAXS result showed that the long period of blended PBSU increased, possibly indicating that the amorphous PVPh might reside mainly in the interlamellar region of PBSU.  相似文献   

16.
17.
One of the most used inorganic fillers is calcium carbonate which quite efficiently enhances the mechanical characteristics while simultaneously lower the cost of thermoplastics, particularly for biodegradable polyester. Virtually, all studies so far have focused on the quest for the filling and modification of nano-sized calcium carbonates. However, the quantity of nano-sized CaCO3 added in the polymer is usually lower than 10%, owing to its high-surface energy and high-surface area and makes powder easier to agglomerate. In this work, we prepared poly(butylene adipate-co-terephthalate) (PBAT)/calcium carbonate composite films by extrusion-blown films with up to 40 wt% micro-sized CaCO3 content. The influence of particle size (5–12 μm) and modification of the particles (with and without silane coupling agents) on the rheological and mechanical properties was thoroughly investigated. Of all the particle sizes employed in this study, the 5 μm (3000 mesh) particles with 30 wt% content coated with 2 wt% aliphatic silane coupling (CA1) agent was observed to furnish the optimum combination of characteristics. The mechanical properties of P7C3/CA1-2 film even better than that of neat PBAT film. These results provided a simple approach for PBAT/CaCO3 films manufacture with low-cost and simultaneously with sound mechanical properties, which can be good candidate for mulching films and packaging applications.  相似文献   

18.
In this study, the use of diethylene glycol (DEG), triethylene glycol (TEG), n-C10H21OH, and ethylene glycol (EG) as solvents for NaOH in the dechlorination of poly(vinyl chloride) (PVC) was investigated. In the early reaction time, the degrees of dechlorination for DEG, TEG, and n-C10H21OH were notably higher than that for EG. Further, the high compatibility between PVC and the solvents was considered to result in the easy penetration of the solvent and OH into PVC particles, leading to the acceleration of dechlorination in the early reaction stage. An improvement of the dechlorination was actually observed for DEG and TEG compared with EG. The solvent with the best compatibility to PVC, n-C10H21OH, however, showed little improvement due to the formation of a protective polyene layer on the surface of the PVC particles.  相似文献   

19.
The effect of adding poly(vinyl chloride) (PVC) and coke filler on the rheological behavior and thermal properties of a coal tar pitch was investigated with a view to developing an appropriate viscoelastic binder for the injection molding of graphite components. Dynamic mechanical analysis revealed that the pitch formed compatible blends with PVC featuring a single glass transition temperature (Tg) intermediate to the two parent Tg’s. Adding PVC to the pitch increased melt viscosity substantially and resulted in strong shear thinning behavior at high PVC addition levels. Adding coke powder as filler increased the melt viscosity even further and enhanced shear thinning trends. Pyrolysis conducted in a nitrogen atmosphere revealed interactions between the PVC and pitch degradation pathways: the blends underwent significant thermal decomposition at lower temperatures but showed enhanced carbon yields at high temperatures. Pyrolytic carbon yield at 1000 °C was further improved by a heat treatment (temperature scanned to 400 °C) in air or oxygen. However, carbon yield decreased with addition of PVC. In addition, the degree of ordering attained following a 1 h heat treatment at 2400 °C also decreased with increasing PVC content.  相似文献   

20.
In this study, poly(butylene adipate-co-terephthalate) (PBAT) was introduced to poly(lactic acid) (PLA) matrix to improve its inherent poor toughness. Besides, the orientation structure was also introduced via die drawing process to compensate for strength loss. The results indicate that die drawing process contributes to improve the mechanical properties of PLA. The tensile strength, modulus, and elongation at break of die-drawn pure PLA increased by 76.6, 36.1, and 1,375.0%, respectively, compared with those of isotropic PLA. Moreover, the tensile strength can be further improved by the addition of PBAT. The die drawing process can remarkably improve crystallinity, and the orientation factor is high when the PBAT content is less than 30 wt%. By combining the PBAT with highly oriented structure imported by die drawing process, it is possible to prepare simultaneously reinforced and toughened materials, which provides a new insight into the modification of PLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号