首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
采用超声波-微波协同法提取沙棘果皮渣中可溶性膳食纤维的工艺条件。通过单因素实验研究柠檬酸质量分数、料液比、微波功率、提取时间对沙棘果皮渣中可溶性膳食纤维提取得率的影响,进一步用Box-Behnken法优化沙棘果皮渣中可溶性膳食纤维最佳提取工艺。结果表明,在柠檬酸质量分数为3%,料液比1:16 g/mL,微波功率620 W,提取时间60 min的条件下,沙棘果皮渣中可溶性膳食纤维提取效果最佳,提取得率为11.07%±0.26%,与模型预测值10.83%误差为2.22%。制备的沙棘果皮渣可溶性膳食纤维持水力为8.02 g/g,持油力为4.19 g/g,膨胀力为3.82 mL/g。超声波-微波协同法是一种提取沙棘果皮渣中可溶性膳食纤维的有效方法。  相似文献   

2.
以野木瓜果皮果渣为原料,采用微波辅助法进行野木瓜水不溶性膳食纤维的提取。在单因素的基础上,设定液料比、微波时间、微波功率、pH值、野木瓜粉末目数、过氧化氢体积分数为自变量,水不溶性膳食纤维(insoluble dietary fiber,IDF)得率为响应值,使用响应面优化微波辅助法提取野木瓜水不溶性膳食纤维的提取工艺。结果显示:野木瓜水不溶性膳食纤维的最优提取工艺为液料比28∶1(mL/g),过氧化氢体积分数5%,野木瓜粉末目数50目,微波功率420 W,微波时间120 s,p H 4.0。野木瓜IDF提取率可达72.72%,且重复性好,IDF的持水力为2.76 g/g,溶胀力为5.50 mL/g。研究结果表明微波辅助法提取野木瓜水不溶性膳食纤维工艺响应面模型的建立具有稳定可靠性。  相似文献   

3.
将从青稞中提取得到的膳食纤维作为辅料开发青稞膳食纤维面包。以青稞膳食纤维面包的感官评价得分作为标准,选择青稞膳食纤维用量、干酵母用量、水的用量以及烘烤时间4个因素进行单因素实验,再进行正交实验,以确定制作青稞膳食纤维面包的最佳制备工艺参数。结果表明:青稞膳食纤维添加量为20%、干酵母添加量为1.2%、水添加量为44%、烘烤时间为20 min时面包品质最佳。此面包膳食纤维含量高,能刺激肠壁蠕动,达到排毒保健的效果,且具有较好的口感、外形及色泽,是一款味美营养、富含膳食纤维、保健价值较高的产品。  相似文献   

4.
以芹菜榨汁后的芹菜渣为原料,采用微波法提取芹菜渣水溶性膳食纤维。研究了浸泡时间、微波时间、微波功率和料液比等对水溶性膳食纤维得率的影响,在单因素试验基础上,通过L9(34)正交试验确定提取芹菜渣水溶性膳食纤维的最佳工艺条件为:浸泡时间50 min,微波时间3 min,微波功率600 W,料液比1∶30(g/m L)。此条件下,芹菜渣水溶性膳食纤维的得率达到13.13%。试验得到的芹菜膳食纤维,颜色为淡黄色,无任何特殊气味,是较为理想的水溶性膳食纤维。该方法提取芹菜渣中的水溶性膳食纤维具有便捷、高效、节能的特点。  相似文献   

5.
以黑豆皮为原料提取可溶性膳食纤维(SDF),使用超声-微波协同方法提取黑豆皮中可溶性膳食纤维,并利用响应面法优化黑豆皮中可溶性膳食纤维的提取工艺条件。结果表明:提取的最优工艺条件为,料液比1∶40 g/m L,微波功率450 W,微波时间30 min,微波温度45℃,此条件下测得黑豆皮SDF得率为15.7280%,经验证实验得其接近理论值。本研究为黑豆皮高膳食纤维食品的开发及黑豆皮综合利用提供理论依据。  相似文献   

6.
不同提取方式对苹果渣中膳食纤维品质的影响研究   总被引:1,自引:0,他引:1  
以苹果渣为原料,采用微波辅助提取法和纤维素酶水解法制备可溶性和不溶性膳食纤维。对不同提取方式所得膳食纤维的理化指标和抗氧化性进行对比分析,试验结果表明:(1)红外光谱检测4种样品均具有纤维素类多糖的特征吸收峰。(2)微波辅助提取的可溶性膳食纤维的持水力高达598.62%,膨胀力为11.10 m L/g;可溶性膳食纤维比不溶性膳食纤维的油脂吸附性好,在饱和脂肪酸的吸附量上效果更加明显;以纤维素酶法提取的不溶性膳食纤维对胆酸钠的吸附能力最好,为93.33 mg/g。(3)纤维素酶法提取的水溶性膳食纤维抗氧化性最好。该研究为资源的充分利用及新产品的开发提供了充分的理论依据。  相似文献   

7.
以鲜食大豆荚为原料,通过碱法、酶法、超声辅助酶法及微波辅助酶法提取水溶性膳食纤维和不溶性膳食纤维,测定其总黄酮含量、还原能力、DPPH自由基清除能力和羟自由基清除能力以研究其抗氧化特性,并与市售大豆膳食纤维作比较。结果表明,各种方法提取的鲜食大豆荚膳食纤维的总黄酮含量及抗氧化特性均高于市售大豆膳食纤维,鲜食大豆荚水溶性膳食纤维的抗氧化特性高于不溶性膳食纤维,酶法、超声和微波处理能提高鲜食大豆荚膳食纤维的抗氧化特性。   相似文献   

8.
微波辅助提取苹果渣可溶性膳食纤维   总被引:2,自引:0,他引:2  
刘素稳  郭朔  刘畅  李军  高海生   《中国食品学报》2010,10(5):152-159
以苹果渣为原料,探讨微波辅助化学法提取可溶性膳食纤维的工艺条件。试验结果表明微波-碱法制备可溶性膳食纤维的最佳工艺条件是:液料比1︰65,pH 11.5,微波功率480 W,微波辐射时间120 s,在此条件下可溶性膳食纤维得率为20.98%。微波-酸法制备可溶性膳食纤维的最佳工艺条件是:液料比1︰65,pH 1.5,输出功率800 W,微波辐射时间100 s,在此条件下可溶性膳食纤维得率为19.84%。与传统方法相比,微波辅助能大大加快组织的水解,使可溶性膳食纤维的提取时间由60 min缩短为2 min。扫描电镜和X射线衍射分析表明微波对苹果渣纤维表面的微结构有破坏作用。  相似文献   

9.
以香菇柄为原料,利用微波辅助法提取其中的水溶性膳食纤维,采用正交试验对香菇柄水溶性膳食纤维的提取工艺进行优化。结果表明,香菇柄水溶性膳食纤维的最佳提取工艺条件为:柠檬酸质量分数为5%、料液比1∶20、微波功率640 W、微波处理时间3 min。在此最佳条件下,香菇柄水溶性膳食纤维的平均得率为10.24%,持水力为2.27 g/g,膨胀力为4.13 m L/g。  相似文献   

10.
陈仕学  郁建平  杨俊  代鸣 《食品科学》2014,35(18):57-62
研究野生阳荷水溶性膳食纤维的最佳提取工艺,以提取时间、料液比、微波功率和浸提液pH值为影响因素,进行四因素三水平的响应面试验设计,对其提取工艺条件进行优化,结果表明:最佳提取工艺条件为提取时间151.4 s、料液比1∶33(g/mL)、微波功率264 W、浸提液pH 3.65,此条件下水溶性膳食纤维的提取率为5.52%,与理论值5.75%相差较小。由此可知,响应面法优化微波辅助提取阳荷水溶性膳食纤维具有时间短、能耗低、提取率高等特点。  相似文献   

11.
论我国包装机械的振兴之路   总被引:3,自引:0,他引:3  
本文对如何振兴我国包装机械提出了若干建设性意见。  相似文献   

12.
研究贮藏温度、化学杀菌剂处理和涂膜对河阴石榴果皮褐变、质量损失率、腐烂及籽粒品质等指标的影响。结果表明,在120 d的贮藏期内,4.5 ℃会引起河阴石榴果实冷害,果皮褐变严重、腐烂率增大。1%壳聚糖涂膜处理降低果实的腐烂率、褐变指数和质量损失率的效果优于1%海藻酸钠和1%羧甲基纤维素钠涂膜。噻菌灵、甲基托布津和多菌灵1 000 倍稀释液浸果60 s可以显著降低果实腐烂率,3 种化学杀菌剂处理之间无显著差异。以42%噻菌灵悬浮剂1 000 倍液浸果,而后以1%壳聚糖溶液涂膜,用0.015 mm聚乙烯保鲜袋单果包装后放入6 ℃条件下贮藏120 d,河阴石榴的腐烂率为3.46%,质量损失率为2.13%,褐变指数为0.11,可溶性固形物含量为14.5%,籽粒品质评分为92,具有较高的商品价值。  相似文献   

13.
本研究制备了燕麦-玉米挤压膨化粉并探究添加魔芋粉共挤压对混粉理化性质的影响,实验主要测定其基本营养成分、糊化特性和体外消化特性。结果表明,挤压膨化处理后,原料中脂肪含量和快消化淀粉含量显著降低(P<0.05),其中脂肪含量由9.38%降至3.06%,但对抗性淀粉含量无影响(P>0.05),原料粉与挤压膨化粉eGI值分别为66.03和67.34,均属于中GI物料。添加魔芋粉与燕麦玉米混粉共挤压后,不同添加量魔芋粉均能显著降低混粉中快消化淀粉含量(P<0.05),提高慢消化淀粉和抗性淀粉含量, 添加5%、10%、15%魔芋粉后eGI值显著降低(P<0.05),分别为48.06、48.51和49.11,均属于低GI物料,可作为代餐产品原料使用。  相似文献   

14.
陈奇志 《中华纸业》2001,22(8):30-32
我国浆纸业发展迅速,成为重要的投资热点行业;本文论述了如何使项目投资建设顺利实现,保证我国浆纸业持续性良好发展,杜绝项目“可批性”,落实项目的可行性,扎实做好项目前期咨询、评估、论证工作的问题。  相似文献   

15.
目的建立采用纳克级激光计数检测器(nano quantity analyte detector,NQAD)同时测定7种人工甜味剂的分析方法。方法纳克级激光计数检测器系统下,使用CAPCELL PAK C_(18) MGⅡ(150 mm×2.0 mm,5μm)色谱柱,以20 mmol/L乙酸铵水溶液(A)-甲醇(B)为流动相进行梯度洗脱,流速0.2 mL/min,柱温40℃。结果7种常见人工甜味剂得到良好分离与检测,在紫外检测器上难以检出的甜蜜素、三氯蔗糖和甜菊苷3种成分,在NQAD检测器上分别得到了0.27、0.17、1.19μg/mL的检出限。色谱峰面积精密度RSD4.97%;标准曲线得到良好线性关系r~20.994;样品回收率96.69%~105.18%之间。结论使用新型NQAD建立了人工甜味剂安赛蜜、糖精钠、甜蜜素、三氯蔗糖、阿斯巴甜、纽甜、甜菊苷的高灵敏度共同分析方法,方法简单、专属性高。  相似文献   

16.
葛根淀粉的酶法水解及其水解产物的流变学特性研究   总被引:2,自引:0,他引:2  
采用α-淀粉酶水解葛根淀粉,制备水溶性麦芽糊精,研究了影响葛根淀粉水解度(DE值)的因素,探讨了DE值与麦芽糊精溶解度的关系,并对麦芽糊精的流变特性进行表征。结果表明:随着酶用量增加,水解速度加快,DE值增加。在一定温度范围内,随温度的升高,水解速度加快,DE值增加。DE值越大,麦芽糊精的溶解度越大。DE=11.52和DE=20.21两种麦芽糊精的水溶液均为牛顿流体,前者放置1h后转变为胀塑性流体,后者则稳定不变。该研究结果为扩大葛根淀粉的用途,提供了理论依据和实际参考。  相似文献   

17.
烤烟中性致香物质在烘烤前后的差异分析   总被引:1,自引:0,他引:1  
为探求烘烤过程对烤烟中性致香物质的影响,采用顶空固相微萃取-全二维飞行时间质谱联用法和半叶法研究了K326和南江3号烟叶中性致香物质种类、含量及其比例在烘烤前后的差异。结果表明:(1)多种香气物质在烘烤过程中发生了转化,有19种香气物质在烤后烟叶未检测到,但增加了36种香气物质。(2)烘烤后香气物质总量显著增加,且不同品种烤烟香气物质转化程度不同,K326的香气物质总量(不含新植二烯)显著高于南江3号。(3)烘烤后西柏烷类降解产物占中性致香物质总量的比例明显降低,而苯丙氨酸降解产物和类胡萝卜素降解产物所占比例明显提高。在烘烤过程中损失了醛、醇和酯类等19种香气物质,产生了类胡萝卜素降解产物、棕色化反应产物等36种香气物质。  相似文献   

18.
对不同包装和延时预冷的“八月脆”桃在- 0.5~0℃低温条件下贮藏15d,随后回温3d,通过测定硬度、可溶性固形物、果实颜色、失重率和腐烂率等品质指标,以探求桃果实满足冷链贮运和货价期要求的最佳预冷和包装条件。结果表明,采用包装纸+ 纸箱(X1)和网套+ 礼品盒(X2)的果实在冷藏15d 后均能保持较高的硬度,SSC 变化不明显,X1 果实腐烂率显著高于其他两组,未包装(X3)果实失重率最高。在回温3d 后,X2 果实的硬度(11.45N)和SSC(9.99%)显著高于X1,腐烂率和失重率最低,果实表面着色充分,果肉未出现褐变;采后6h 入库预冷的果实在冷藏15d 和回温3d 后的硬度均显著高于采后12h 和18h 入库果实,腐烂率和失重率均显著低于对照组,果实表面色泽呈微红色,果心处无褐变。综合评定采后6h 入库预冷和采用网套+ 礼品盒包装果实的贮运性和货架期的商品率较高。  相似文献   

19.
辐照对峰甘板栗货架品质的影响   总被引:1,自引:0,他引:1  
郭豪宁  赵玉华  常学东 《食品科学》2016,37(18):262-267
研究~(60)Co-γ射线辐照对真空包装峰甘板栗货架期指标的影响及其机制,初步确定延长货架期的最佳辐照剂量。通过~(60)Co-γ射线以0、0.5、1.0、3.0、3.5、4.0、4.5、5.0 kGy剂量辐照峰甘板栗,分别在贮存0、10、15、20、30 d时检测样品的微生物指标(菌落总数、霉菌及酵母数、大肠菌数、沙门氏菌数)、感官指标和理化指标。结果表明:辐照处理对峰甘板栗能够起到很好的杀菌作用;结合峰甘板栗感官品质评定及生理生化数据分析,辐照剂量为4.0 kGy时,可改善峰甘板栗感官质量并保持理化营养指标。初步认为,在4℃条件下,辐照剂量为4.0 kGy时,在微生物安全限量方面,使货架期延长至少20 d。  相似文献   

20.
绿豆淀粉凝胶的质构特性和超微结构研究   总被引:2,自引:1,他引:1  
研究了绿豆淀粉的颗粒形态等基本性质;探讨了绿豆淀粉凝胶的质构特性和超微结构。结果表明,淀粉颗粒大多呈椭圆形,平均长轴直径为16.8μm,长轴直径范围为6.5~30.8μm。淀粉糊化的终了温度TC为73.21℃。淀粉凝胶的质构特性受淀粉浓度、蔗糖和柠檬酸添加量影响。随着淀粉浓度或蔗糖浓度增加,凝胶硬度和弹性均显著增加;在柠檬酸质量分数为0.1%~0.2%时,淀粉凝胶的硬度和弹性均达到最大。获得凝胶质构特性的最佳条件为:淀粉质量分数8%、蔗糖质量分数12%、柠檬酸质量分数0.2%。影响凝胶硬度的主次因素依次为:淀粉浓度、柠檬酸浓度、蔗糖浓度;影响凝胶弹性的主次因素为:淀粉浓度、蔗糖浓度、柠檬酸浓度。添加蔗糖后凝胶的三维网变得致密、有序。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号