首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
合成了新型Li2MnSiO4/C复合材料,并且采用多种物理及化学分析方法分析了复合材料的结构、形貌及电化学性能。结果表明,碳的复合有效提高了材料的电子和离子传导性,有利于其电化学动力学的改善。电化学测试结果表明,Li2MnSiO4/C复合材料具有较好的充放电能力和循环稳定性。  相似文献   

2.
本文分别以柠檬酸(C6H8O7·H2O)和蔗糖(C12 H22 O11)为碳源,采用溶胶凝胶法合成了Li2 MnSiO4/C材料.X射线衍射(XRD)结果显示合成出的Li2 MnSiO4/C材料均属于正交晶系Pmn21空间群.扫描电子显微镜(SEM)结果表明合成出的Li2 MnSiO4/C1(以C6H8O7·H2O为碳源)材料粒径均在500 nm左右,Li2MnSiO4/C2(以C12 H22O11为碳源)材料粒径在1μn左右.充放电测试结果显示,Li2MnSiO4/C2较Li2 MnSiO4/C1有较高的首次不可逆容量;两种电极材料经几周循环后均具有稳定的循环性能,所制得的Li2 MnSiO4/C1较Li2 MnSiO4/C2具有高的循环容量.  相似文献   

3.
以CH3COOLi、FeC2O4、纳米SiO2为原料,葡萄糖为碳源,超导碳为微波耦合剂,采用微波加热法合成了Li2FeSiO4/C材料。考察了不同微波时间对材料室温下电化学性能的影响,并通过X射线衍射、扫描电子显微镜、透射电子显微镜和X射线能谱对样品的晶型结构、表面形貌和组成进行表征分析。结果表明,微波合成法可以快速制备Li2FeSiO4/C材料,微波时间16min所得样品具有最好的电化学性能。室温下以C/16倍率进行充放电测试,放电容量为111.5mA·h/g;以0.2C进行充放电循环,首次放电容量为96.7mA·h/g,19次循环后容量仍有95.2mA·h/g。  相似文献   

4.
程琥  高丹  施志聪 《硅酸盐学报》2013,(10):1409-1414
以醋酸锂、醋酸锰、醋酸镁、正硅酸四乙酯为原料,采用溶胶–凝胶法制备Li2Mn1–x Mgx SiO4/C正极材料。用X射线衍射和扫描电子显微镜表征材料的晶体结构和形貌。结果表明,掺杂10%Mg的Li2MnSiO4材料仍具有正交斜方结构。电化学测试结果表明:Mg掺杂能够提高Li2MnSiO4材料的比容量,在16.65mA/g电流密度下,Li2Mn1–x Mgx SiO4/C(x=0.1)材料的首次放电比容量为212 mA h/g。用X射线衍射和X射线光电子能谱研究了硅酸锰锂正极材料的容量衰减机理,其主要是由硅酸锰锂晶体结构退化引起的。  相似文献   

5.
锂离子电池正极材料Li2Mn0.95Mg0.05SiO4的合成和电化学性能   总被引:3,自引:3,他引:0  
以Li2SiO3、Mn(CH3COO)2·4H2O和Mg(CH3COO)2·4H2O为原料,采用高温固相反应法成功合成出Li2Mn0.95Mg0.05SiO4锂离子电池正极材料.采用XRD、扫描电镜等技术分析了合成粉末的相组成、结构和微观形貌,利用电池测试仪测试了正极材料的电化学性能.研究结果表明,固相合成的粉末主相为Li2Mn0.95Mg0.05SiO4,同时存在少量的杂质,产物表面形貌、粒度均与未掺杂样品类似,二者均为非球形颗粒,颗粒尺寸约为100~500 nm.电化学测试结果表明,Mg掺杂后,正极材料的可逆容量和循环寿命都得到提高.正极材料电化学性能提高的机理在于Mg掺杂稳定了Li2MnSiO4正极材料的结构.  相似文献   

6.
采用高温固相法合成尖晶石型Li4Ti5O12电极材料,研究了镁掺杂对其电化学性能的影响。通过扫描电镜(SEM)、X射线衍射(XRD)手段对材料进行表征,恒电流充放电考察了掺杂产物的电化学性能。Li4-xMgxTi5O12(x=0.1)具有良好的电化学性能和粒度分布,在0.2 C,1 C,3 C,5 C倍率下充放电时,首次充电比容量依次为164.2,158.6,150.8,144.5 mAh/g。结果表明掺杂镁的Li4Ti5O12,其高倍率得到了改善。  相似文献   

7.
采用溶胶-凝胶法合成了复合离子掺杂的尖晶石型锰酸锂Li1.02Mn1.92Al0.02Cr0.02Mg0.02O4-xFx(x=0,0.06)正极材料,并用XRD、CV、EIS和充放电测试等研究了其结构和电化学性能。结果表明,F与金属离子(Li、Al、Cr、Mg)的复合掺杂不仅提高了材料的比容量,还增加了尖晶石结构的稳定性,改善了材料的循环性能和可逆性能;充放电测试结果表明,Li1.02Mn1.92Al0.02Cr0.02Mg0.02O3.94F0.06具有优越的循环性能,常温下,以1/3C充放电的首次放电容量及50个循环后的容量保持率分别为117.9 mAh/g,96.9%。  相似文献   

8.
采用固相法和沉淀法合成了锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2探讨了合成温度、不同合成方法对材料的电化学性能的影响。利用充放电测试、循环伏安测试方法对合成的LiCo1/3Ni1/3Mn1/3O2进行了表征。结果表明,固相法900℃煅烧合成的材料电化学性能较好,沉淀法合成的材料电化学性能最好,以10.0mA/g的电流充放电,首次放电比容量为576.0C/g,循环50次后放电比容量仍保持501.5C/g。以100.0mA/g的大电流放电,放电比容量达到430.2C/g。  相似文献   

9.
为了改善Li Ni0.5Mn1.5O4的电化学性能,采用喷雾干燥法和静电纺丝法合成了Li Ni0.5Mn1.5O4前驱体。借助X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对Li Ni0.5Mn1.5O4进行了表征,采用恒流充放电、循环伏安及交流阻抗对其电化学性能进行了测试。结果表明:静电纺丝法制备的Li Ni0.5Mn1.5O4呈多孔的管状结构,颗粒粒径约为80 nm,其循环性能有待进一步提高。而喷雾干燥法制备的前驱体在900℃烧结合成的Li Ni0.5Mn1.5O4具有明显的尖晶石结构,颗粒分布均匀,颗粒平均粒径在1~2?m。静电纺丝法和喷雾干燥法合成的纯相Li Ni0.5Mn1.5O4在0.1 C倍率下首次充放电效率分别为48.1%、50.3%。喷雾干燥法制备的Li Ni0.5Mn1.5O4前驱体经碳包覆后的材料首次充放电效率提高到53.4%,在1 C倍率下循环200次后,容量保持率高达93.3%。  相似文献   

10.
采用溶胶-凝胶法合成制备了分子式为Li1.05Co0.05VxMn1.95-xO4(x=0.02、0.05、0.08)的固溶体样品。利用XRD、SEM对材料进行结构形态表征,并以合成的材料为正极材料进行循环伏安(CV)和恒电流充放电测试,结果显示:固溶体Li1.05Co0.05VxMn1.95-xO4具有较好的尖晶石结构,且颗粒分布均匀,晶面光滑。电化学测试结果显示:其具有较好的充放电性能和良好的循环性能,在室温0.5 C充放电倍率下,Li1.05Co0.05V0.05Mn1.9O4材料的初始放电比容量为110.7 mAh/g,且50次循环后,容量保持率为94.6%。  相似文献   

11.
以MgAC2为掺杂剂,葡萄糖碳化为碳包覆源,通过溶胶凝胶法制备了含有镁离子的硅酸锰锂正极材料前驱体,在惰性气保护下经高温焙烧得到碳包覆的硅酸锰锂正极材料.对镁离子掺杂对硅酸锰锂物理和电化学性能的影响进行了探讨.交流阻抗和循环伏安测试表明,碳包覆和低含量镁离子掺杂不会破坏硅酸锰锂的材料,并且显著提高了电子传导过程的电导率...  相似文献   

12.
在Li2O-MnO2-SiO2三元系统中通过高温固相法合成具有不同配比Li2MSiO4(M=Fe、Mn等)的锂离子电池正极材料,采用X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和电化学性能测试表征不同配比条件下Li2MSiO4(M=Fe、Mn等)正极材料的微观结构,颗粒形貌及电化学性能。结果表明:烧结温度600℃,保温时间30 h下,Li∶Mn∶Si比例为4.04∶13.76∶1时的样品充放电比容量最高。  相似文献   

13.
以V2O5、NH4H2PO4、Li2CO3、(CH3COO)2Mn.4H2O原料,以葡萄糖和抗坏血酸为复合还原剂及碳源,通过常温还原-低温烧结法制备锂离子电池正极材料Li3V(2-2x/3)Mnx(PO4)3/C(x=0,0.03,0.06,0.09,0.12)。通过X射线衍射(XRD),扫描电镜(SEM),恒电流充放电测试对该正极材料的物相、结构、微观形貌以及电化学性能进行了表征。结果表明,Mn2+的掺杂对磷酸钒锂电化学性能的发挥影响很大,其中当锰掺杂量x=0.09时材料表现出最佳的电化学性能,0.2 C倍率条件下首次放电比容量131 mAh/g,循环50次后容量衰减仅为4.02%。  相似文献   

14.
吴骏  陈善华  邓玲  邱娟 《陕西化工》2014,(4):651-653,657
在碳粉填埋保护条件下,分别以草酸、硝酸锂、磷酸二氢铵和偏钒酸铵为碳源、锂源、磷源和钒源,采用固相合成法,在900,1 000,1 100℃下制备了Li3V2(PO4)3/C正极材料。X射线衍射、扫描电子显微镜和充放电分析测试表明,900,1 000,1 100℃焙烧均可获得较纯且粒径为50 nm~3μm的Li3V2(PO4)3/C;随焙烧温度升高,合成产物中的LiVP2O7杂质相含量下降;在0.1 C充放电倍率下,900,1 000,1 100℃合成的Li3V2(PO4)3/C充放电30次后容量保持率分别为80%,98.5%和95.7%。  相似文献   

15.
以廉价的Fe2O3为铁源,(NH4)H2PO4为磷源,Li2CO3为锂源,分别以乙炔黑、葡萄糖、PEG6000为还原剂和碳源,采用碳热还原法制备了LiFePO4/C复合材料。X射线衍射(XRD)分析表明用三种碳源都合成了橄榄石结构的LiFePO4。扫描电子显微镜(SEM)分析显示,以PEG6000为碳源合成的LiFePO4/C复合材料粒径较小,较均匀,且有较好的碳包覆。以充放电曲线、循环性能和交流阻抗等测试研究了材料的电化学性能,结果表明,以PEG6000为碳源合成的材料的电化学性能较好,0.1C、1C下首次放点比容量分别为144.7 mAh/g、132 mAh/g。  相似文献   

16.
在锂离子电池电解液1 mol/L六氟磷酸锂/碳酸乙烯酯+碳酸二甲酯+碳酸甲乙酯(体积比为1∶1∶1)溶液中添加丁二酸酐作为提高电池充放电效率的添加剂。 采用恒流充放电测试、循环伏安曲线、线性伏安曲线和电化学阻抗谱等手段,研究了添加剂丁二酸酐对电解液电化学稳定窗口的影响,以及丁二酸酐与锰酸锂材料的相容性。结果表明:在电解液中添加2%(质量分数)的丁二酸酐,提高了LiMn2O4/Li电池常温和高温容量保持率。丁二酸酐可以优先于基础电解液发生少量氧化分解,从而降低了LiMn2O4/Li电池的极化。同时,丁二酸酐也可降低电池循环过程的阻抗。  相似文献   

17.
通过简单水热反应制备磷酸铁锂前驱体,并结合后期热处理过程制备了镁离子掺杂碳包覆的磷酸铁锂正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等表征了镁离子掺杂磷酸铁锂的成分、形貌和结构。元素分布结果证明镁离子均匀掺杂在磷酸铁锂材料中。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,镁离子掺杂后的磷酸铁锂材料具有较高的放电比容量(0.1C放电比容量为 160.1 mA·h/g)和优越的倍率性能(20C放电比容量为77.2 mA·h/g),同时减小了极化和电荷迁移电阻。这条合成路线是提高水热法制备磷酸铁锂正极材料电化学性能的有效方法。  相似文献   

18.
采用柠檬酸(C6H8O7·H2O)作碳源制备Li4Ti5O12/C复合材料,利用X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)研究了柠檬酸添加量对材料结构和形貌的影响。研究结果表明:添加不同量的柠檬酸,所制备的样品均为尖晶石型结构。随着柠檬酸添加量的增加,材料颗粒粒径逐渐增大,分布更加均匀,团聚也逐渐加剧。在1.0~2.5V的电压范围内,对样品进行恒流充放电测试,柠檬酸(C6H8O7·H2O)的添加量为6%时,制备的Li4Ti5O12/C复合材料具有最佳的电化学性能,0.2C和1C的放电比容量分别为171.3m Ah/g和165.4m Ah/g。  相似文献   

19.
以废旧磷酸铁锂(LiFePO4)正极材料为原料,经过热处理除杂和固相补锂后,利用碳热还原反应重新获得了电化学性能优异的LiFePO4/C正极材料。测试结果表明,补加物质的量分数为10%的Li2CO3和质量分数为25%的葡萄糖可获得结晶度良好、无杂质的LiFePO4/C正极材料,且能有效弥补其可循环锂的损失。在0.1C和20C倍率下,其放电比容量分别为159.6 mA·h/g和86.9 mA·h/g,在10C倍率下,经1 000次循环后,再生LiFePO4正极材料的容量保持率为91%。说明该方法可有效处理废旧LiFePO4电池,为大规模循环再利用废旧LiFePO4正极材料提供了一条可行的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号