首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 65 毫秒
1.
多径效应导致基于接收信号强度指示(RSSI)的室内定位精度不高,采用高细粒度的物理层信道状态信息(CSI)可以更好地描述室内多径环境,提高基于指纹的室内定位的精度。利用聚类算法提取CSI,提高了不同位置之间指纹的区分性。在定位阶段采用一种简单有效的方法进行类的匹配。实验结果表明,在使用单个信标的情况下,定位精度较以往算法提高了24%。  相似文献   

2.
室内精确定位具有重要的应用价值.由于GPS等系统在室内受到多种因素影响无法提供精确定位,如何精确定位室内环境位置成为研究和应用的热点.通过分析无线设备的信道状态信息(CSI)可以实现无需携带设备的精准室内定位方法,并应用于多种情形下的位置追踪和感知.为了解决无线信号多径效应和噪声干扰对室内精确定位的影响,提出了基于稀疏表示的CSI室内定位方法.利用CSI提供的频率分集和多天线提供的空间分集,有效地减轻了多径效应的影响.在此基础上,通过稀疏表示方法进行了一定程度上的指纹噪声消除,提高了算法的鲁棒性和抗噪能力;利用CSI灵敏的相位特征提高了定位准确度.采用路由器作为信号发射器,利用Linux 802.11n CSI-TOOL采集CSI信号,定制清华同方台式电脑和Intel 5300无线网卡驱动搭建实验环境.实验结果表明,该算法能够有效提高室内定位的准确度和精度,平均精度在0.5 m左右,准确度达到了91%.  相似文献   

3.
传统的加权K最近邻算法中以距离作为权值,随着数据维度的增加,计算距离与真实距离的误差越来越大。针对这一问题,提出了一种贝叶斯后验概率的加权K最近邻算法——贝叶斯后验概率(Bayes ian Posterior Probability-Weighted K-Nearest Neighbor,BPP-WKNN)方法。首先用支持向量机算法分类选取测试点的近邻指纹点,其次计算测试点到每个近邻指纹点的贝叶斯后验概率,最后以贝叶斯后验概率的大小作为权值进行BPPWKNN算法定位。实验果表明:与基于曼哈顿距离的加权K最近邻算法和基于欧氏距离的加权K最近邻算法相比,改进后的BPP-WKNN定位算法的定位精确度和稳定性更高;利用支持向量机算法的稀疏性定位完成时间分别缩短了49%与42%。  相似文献   

4.
为研究室内定位技术在复杂环境中的应用,以楼梯和实验室为实验场景,提出了一种基于信道状态信息(CSI)与SVM回归的室内定位方法.该方法通过基于密度的空间聚类方法(DBSCAN)去除信号噪声,并用主成分分析法(PCA)提取贡献最大的指纹特征,同时降低CSI指纹的维度.通过SVM回归建立CSI指纹与目标位置之间的非线性关系...  相似文献   

5.
6.
针对现有基于信道状态信息的室内无源指纹定位方法在复杂场景中多数存在相位误差偏移、指纹噪声大、样本分类精度低的问题,提出一种基于相位差值矫正的室内指纹定位算法。在离线阶段通过计算相位差值矫正通信链路中的相位误差和偏移,建立鲁棒的指纹数据库,使用BP神经网络对指纹特征数据进行训练,得到指纹特征信息与物理位置的映射关系模型。在线阶段相位采样值经过差值矫正后作为模型的输入,计算得到最终的精确定位结果。实验结果表明,与现有基于指纹的定位方法相比,该方法具有去噪效果显著、定位精度高的优点。  相似文献   

7.
基于信道状态信息(CSI)的定位技术在室内场景应用中被广泛关注,为了提高WiFi信号多径效应对接收信号强度指示的室内定位精度和稳定性,提出一种基于CSI信号的被动式室内指纹定位算法.该算法在离线阶段将定位场所划分为同等大小的区域块,在各连接点位置使用方差补偿的自适应卡尔曼滤波(Kalman)算法对原始数据进行滤波.再对...  相似文献   

8.
为了解决基于接收信号强度指示(RSSI)的室内定位方法定位精度低和稳定性差等问题,提出了一种基于信道状态信息(CSI)的无源室内定位算法。该算法使用卡尔曼滤波处理原始CSI信号,结合高斯径向基核函数加权的K邻近算法(RBF-KNN)与置信度空间进行室内定位。实验结果表明:该方法精度高于其他算法。  相似文献   

9.
针对基于接收信号强度RSS(Received Signal Strength)或信道状态信息CSI(Channel State Information)的室内定位方法在现实环境中定位精度低的问题,提出一种RSS和CSI融合的二阶段室内定位方法.离线训练时采集数据构建指纹库;在线测试时首先利用RSS和改进的k最近邻kNN(k-NearestNeighbor)算法进行位置粗略估计,然后根据粗略估计结果筛选参考点构建子指纹库,最后使用高斯核函数改进的k最近邻算法进行位置精确估计.将该定位方法在室内复杂环境和空旷环境两种环境中进行实验验证,定位精度分别达到72.4%和75.9%,并将本文方法与两种现有的经典定位方法DeepFi和Horus在同一环境中进行比较,实验结果表明该方法能够有效地减小定位误差、提高定位精度.  相似文献   

10.
《微型机与应用》2017,(24):58-61
无线电干涉定位系统(Radio Interferometric Positioning System,RIPS)是一种新型高精度测相定位系统,但RIPS在室内环境受多径效应影响无法进行有效定位。首先揭示了由多径引起的RIPS相位观测误差具有空间多样性特征,服从"类高斯"统计分布,然后提出基于无线电干涉的室内定位跟踪方法 RIT(Radio Interferometric Tracking)。不同于传统RIPS,RIT利多径相位误差的统计分布特性对运动速度进行估计,以此来完成室内目标的有效定位和跟踪。基于USRP N210软件无线电平台构建了原型系统,并在室内环境进行实际系统实验。实验结果表明,随着距离的增长RIT定位误差均值和中值大致稳定在80 cm和70 cm,相比RIPS分别下降了87.8%和60.7%,验证了RIT方法的有效性。  相似文献   

11.
基于朴素贝叶斯方法的协同过滤推荐算法   总被引:2,自引:0,他引:2  
随着电子商务系统用户和商品数目的不断增加,导致整个项目空间上的用户评分数据极端稀疏,严重影响推荐系统的推荐质量。针对这一问题,提出了一种基于朴素贝叶斯方法的协同过滤推荐算法,采用改进的加权朴素贝叶斯方法对没有评分的数据进行预测。通过对未评分数据进行预测,缓解了数据稀疏性,提高了最近邻居项目搜索的准确度。实验结果表明,该算法在一定程度上提高系统的推荐质量。  相似文献   

12.
Wi-Fi技术的广泛应用和部署催生了许多基于Wi-Fi的室内定位技术。近年来,基于Wi-Fi的设备无关定位算法引起了研究人员的广泛注意。设备无关定位算法不需要目标对象携带无线传输设备,而是通过测量目标对象对无线信号传输的影响来反向推断目标对象的位置。由于不需要目标对象携带相关设备,因此可以广泛应用于多种场合,如老人健康护理等。已有的设备无关定位技术通常需要事先采集训练数据,因此容易受室内复杂多变的环境干扰,导致定位精度下降。 提出一种基于视距路径检测的设备无关定位算法。利用物理层信道状态信息CSI,可以判断一对无线收发设备之间的路径是否是视距LoS路径。在此基础上,提出一个新的设备无关定位算法,该算法在监测区域部署一组Wi Fi收发装置,对任意一对无线设备,通过识别它们之间是否存在视距路径来判断目标对象是否在这对设备的菲涅耳区域内。此外,还提出一种基于投票的方法来获得目标对象的最可能位置。在实际设备上的实验结果表明,该定位算法可以达到0.5 m左右的精度,并且不需事先训练,具有较高的实时性。  相似文献   

13.
针对室内空间内的人员定位困难问题进行了研究,提出了一种基于Wi-Fi指纹法和循环神经网络(re-current neural network,RNN)的多传感器融合室内定位算法.该算法将智能手机接收到的路由器信号强度作为时间序列输入RN N,通过RN N获得对行人精度较高的定位,与此同时获取智能手机中惯性测量单元提供的位置信息.随后,通过粒子滤波算法对两种定位方式的定位结果进行融合.在实际场景下设计了多组实验进行对比.实验结果表明,该算法定位平均误差为0.9 m,优于加权K近邻等算法,可以为行人提供实时的定位.  相似文献   

14.
WiFi作为当前最重要的通信方式之一,基于WiFi信号的室内定位系统最有望在日常生活中得到广泛地部署应用.最新研究表明,当采用WiFi通信过程中获取的信道状态信息(CSI)对目标进行定位时,系统可实现亚米级的定位精度.然而,实验场景下的定位精度受到测试样点位置、WiFi设备布局、天线布局等诸多因素的影响.因为目前仍缺少WiFi CSI定位性能预测方法, WiFi定位系统部署后往往难以获得预期的精度.为此,面向多样化场景提出WiFi CSI定位性能的预测模型.首先,从CSI定位的基本物理模型出发,定义天线对的误差微元函数,并通过对定位空间的分析生成误差微元矩阵以及定位性能热度图;其次,对天线对进行拓展,通过引入多天线融合方法、多设备融合方法构建通用的CSI定位性能预测模型;最后,为了将真实场景地图考虑在内,提出将上述热度图与场景地图相融合的方法,从而实现场景定制化的性能预测.在理论分析的基础上,结合2个不同场景下的实验数据验证了定位性能预测模型有效性.实验结果表明,实际定位精度的变化趋势与理论模型相吻合,通过理论模型分析可将定位精度优化32%–37%.  相似文献   

15.
目前常用的室内定位算法在构建指纹库时,因为在参考点处接收到的信号强度值存在噪声值,传统的欧式距离计算公式忽略信号发射器的稳定程度从而造成定位误差,以及K近邻算法无法根据实际情况动态的确定参与定位的参考点个数,从而造成定位算法缺乏拓展性和稳定性。针对上述情况,本文设计了一种经过方差滤波的动态自适应室内指纹定位算法。该算法首先在离线阶段利用方差滤波去掉噪声值,之后在在线阶段利用新的基于方差的相似度计算公式计算待定位点与各个参考点之间的相似度,然后动态自适应的确定距离较小的K个点来参与定位计算,最后利用确定的K个点加权估计待定位点的位置。实验结果证明,该算法较对比算法能够有效的提高定位精度和定位的稳定性。  相似文献   

16.
随着移动计算领域的兴起,基于位置的服务越来越受青睐。目前各种室内定位的方法层出不穷,由于室内广泛部署了无线基础设施,基于WiFi指纹信息的室内定位技术是其主流方法。设备异构和室内环境变化是影响定位精度的主要因素。本文针对以上两个问题,提出一种层次Levenshtein距离(HLD)的WiFi指纹距离计算算法,实现异构设备的指纹无校准比对。将不同移动设备采集的RSSI信息转化为AP序列,根据AP对应的RSSI值的差异性计算其层次能级,结合Levenshtein距离计算WiFi指纹之间的距离。对于需定位的WiFi指纹RSSI信息,利用HLD算法获取K个近邻,采用WKNN算法进行预测定位。实验中,为了验证算法的鲁棒性和有效性,在3种不同类型的室内环境中采用5种不同的移动设备来采集WiFi的RSSI信息,其定位的平均精度达1.5 m。  相似文献   

17.
基于内容的垃圾邮件过滤问题是Internet安全技术研究的一个重点问题,而基于贝叶斯的分类方法在垃圾邮件处理上表现出了很高的准确度,因此受到了广泛的关注。在朴素贝叶斯算法的基础上,提出了一种基于最小风险贝叶斯方法同Boosting算法相结合的邮件过滤改进算法,提高了分类的精确度。实验证明,算法在邮件过滤中有更好的表现。  相似文献   

18.
为了在降低资源能耗和带宽占用情况下,提高无线传感器网络WSNs移动目标定位跟踪的精度,提出了基于Kullback-Leibler分歧的变分滤波的WSNs贝叶斯移动目标定位跟踪算法。首先,利用高斯和Wishart分布在不考虑速度限制和方向移动限制情况下,构建WSNs移动定位的贝叶斯状态演化模型,并基于路径损耗模型构建移动目标定位的观测模型;其次,利用Kullback-Leibler分歧构建变分滤波的误差计算模型,通过周围激活节点实现移动节点目标的位置估计,设计了递归概率计算过程综合预测和更新两个过程,并实现了定位和目标跟踪的同步化;最后,通过仿真验证了所提模型在跟踪精度和资源节约上的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号