首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在Gleeble 3500热模拟试验机上对锻态TB9钛合金在变形温度1 003~1 103 K、变形速率1~0.001 s-1进行了等温压缩变形处理。基于真应力-应变曲线建立了锻态TB9钛合金高温变形稳态流变方程。结果表明,TB9钛合金的峰值应力随变形温度的提高和应变速率的减小而降低,达到峰值应力后,在加工硬化和流变软化共同作用下进入稳态流变阶段;获得了锻态TB9钛合金高温变形的本构方程。  相似文献   

2.
用Gleeble-1500型热模拟试验机对Ti53311S钛合金在温度为880~1080℃,应变速率为0.001~10 s-1的条件下进行高温压缩变形行为的研究.测试了其真应力.真应变曲线,采用双曲正弦本构方程计算出激活能,双相区为641 kJ/mol,β相区为244 kJ/mol.观察了变形后的显微组织,并分析了其变形机制.结果表明:该合金对温度和应变速率敏感,不同变形条件下应力值变化很大;应变速率敏感指数(m)随温度升高而降低,而变形激活能(Q)随温度升高而增大.合金的变形机制在双相区为晶界滑移和晶粒球化,在β单相区为动态回复.  相似文献   

3.
本文以Ti-575钛合金为研究对象,分别对魏氏组织和双态组织Ti-575钛合金进行热模拟压缩实验,分析不同热变形条件下的真应力-应变曲线,构建了其在α+β相区的热变形本构方程,并分别探究了变形温度和应变速率对微观组织的影响。结果表明,流变应力值随着变形温度的升高而降低,随着应变速率的升高而升高;当应变速率为0.1 s-1及以上时,随着变形温度的升高流变曲线出现了不连续屈服现象。根据两种组织Ti-575钛合金流变曲线的峰值应力,分别计算出其在α+β相区的变形激活能,构建Arrhenius型热变形本构方程。在不同的热变形条件下,随着变形温度的升高,魏氏组织Ti-575钛合金动态再结晶的程度越来越大,而双态组织Ti-575钛合金等轴αp相体积分数和尺寸逐渐降低;随着应变速率的降低,魏氏组织Ti-575钛合金动态再结晶的程度逐渐增大,而双态组织Ti-575钛合金等轴αp相体积分数先减少后增加;双态组织Ti-575钛合金在830℃或1 s-1应变速率下热压缩时,显微组织中残留少量的粗片层α相没有发生相变,βt基体中会有硅化物析出。  相似文献   

4.
在Gleeble-1500热模拟试验机上,当应变速率为0.001~10 s-1、变形温度为700~900℃时,采用高温压缩试验对Ti-55531钛合金热压缩变形中流变应力行为进行研究。研究结果表明,两相区变形时,曲线呈动态再结晶型,单相区变形时,曲线呈动态回复型。流变应力随着变形温度的升高而降低,随应变速率的提高而增大。采用双曲正弦模型确定该合金的变形激活能,两相区变形激活能为407.75 k J·mol-1,单相区变形的形变激活能为157.97 k J·mol-1,建立了两相区和单相区变形的本构方程。误差分析表明,流动应力计算值与试验值之间的相对误差小于10%,所建立的本构关系能比较精确地描述Ti-55531钛合金热加工过程中的流动行为。  相似文献   

5.
铸态TB6钛合金热变形行为及本构关系   总被引:1,自引:0,他引:1  
通过等温恒应变速率压缩实验研究铸态TB6钛合金在温度为800~1 100 ℃,应变速率为10-3~1 s-1条件下的热变形行为.结果表明:应变速率对铸态TB6合金流变应力的影响最显著,其次是变形温度,而应变的影响作用最小.在低温高应变速率下,流变应力曲线呈连续软化特征,而在高温低应变速率下,流变应力曲线呈稳态流变特征.铸态TB6合金的热变形激活能为200 kJ/mol,接近纯钛β相的自扩散激活能,表明在实验条件范围内主要发生动态回复过程.在Arrhenius方程基础上考虑了应变对流变应力曲线的影响,建立了能准确描述铸态TB6钛合金流变应力曲线的双曲正弦本构关系.  相似文献   

6.
在Gleeble-3000热模拟试验机上进行等温恒速率热压试验(变形温度800~950℃,应变速率0.001~1.0 s-1),研究了TB8合金的高温塑性变形流变应力变化规律,建立了一个包含应变量的本构方程。结果表明,流变应力随变形温度的升高和应变速率的降低而减小;当ε·≤0.1 s-1时,TB8合金高温热压流变曲线为动态再结晶型流变曲线;热变形激活能Q、材料常数n、α、及ln A均与变形量有关;所建立的本构关系能较好的反应TB8合金高温低应变速率下的流变特征。  相似文献   

7.
采用Gleeble3500对TB8钛合金进行等温恒应变速率热模拟压缩试验,研究该合金在温度750~900℃、应变速率0.001~10 s-1热变形参数范围内基于Murty判据的加工图,并分析TB8钛合金的热变形行为。结果表明:TB8钛合金的失稳变形区为:温度750~780℃,应变速率0.03~10 s-1;温度780~900℃,0.35~10 s-1,发生失稳变形后的组织特征为局部流动及β相晶粒的不均匀变形。较佳的稳定变形区为:温度815~885℃、应变速率0.03~0.1 s-1,发生稳定变形后的组织为动态再结晶后的等轴组织。结合预测的稳定变形区及显微组织特征可知,在单相区850℃变形时,0.1 s-1作为动态回复及动态再结晶的临界应变速率。  相似文献   

8.
对空冷态TC11钛合金在温度750~1100℃、应变速率0.001~10.0 s-1范围内进行等温压缩实验,利用流动应力-应变曲线和加工图研究了该合金在α+β两相区和β单相区的高温流变行为、流变失稳现象及变形机制。结果表明,在α+β两相区,流动应力超过峰值后在低温区随应变的增大持续下降,在中、高温区先下降最后趋于接近稳定的应力值;在β单相区,流动应力随应变的增大略有下降然后逐渐趋于稳定。在加工图上,α+β两相区η值较高的范围大致为750~900℃、0.001~0.006 s-1和900~1000℃、0.001~0.02 s-1,分别是α片层的球化起作用和α片层的球化及α+β-β相变同时起作用的区域;β单相区η值较高的区域大致为1000~1100℃、0.003~0.3 s-1,是动态再结晶起作用的区域。这些区域均是良好的加工区域。流变失稳区为750~875℃、0.006~10.0 s-1,875~975℃、0.03~10.0 s-1和975~1100℃、1.0~10.0 s-1,失稳现象表现为宏观剪切、绝热剪切带和β晶粒的不均匀变形。  相似文献   

9.
通过原位自生反应热压法制备出TiB晶须增强Ti6Al4V(TC4)合金基复合材料(TiBw/Ti64)。通过热压缩实验研究这种新型复合材料的高温变形行为,变形温度区间为900~1100°C,变形应变速率区间为0.001~10s1。结果显示,该复合材料的流变应力随变形温度的升高与应变速率的降低而降低。当应变速率达到10s1时,出现了非连续屈服与流变失稳现象,特别是在β相区变形时,这种现象更加明显。根据应力—应变曲线上获得的峰值流变应力,分别获得了α+β双相区与单一β相区的流变应力方程。根据流变应力方程,获得了α+β双相区塑性变形激活能为822.3kJ/mol,单一β相区塑性变形激活能为209.4kJ/mol。增强体网状组织结构与基体组织结构变形形态较大程度上取决于变形区域与变形参数。  相似文献   

10.
在Gleeble1500热模拟试验机上对Ti26(Ti-V-Al-Cr-Sn-Nb-Zr系)钛合金进行了恒应变速率压缩变形试验,在温度范围为900~1150℃,应变速率范围为ε=10-3~10s-1,测试了其真应力-应变曲线。β区热压缩、变形的主要软化机制是动态回复,ε≥1s-1时,变形的过程中有动态再结晶现象发生;ε≤10-1s-1时,变形的主要软化机制是动态回复。结合Arrhenius方程并引用Zener-Hollomon参数建立了表征各参数关系的本构方程,求出了Ti26合金的变形激活能。  相似文献   

11.
采用Gleeble1500热模拟机进行了热压缩试验,研究了TC18钛合金在温度700~950℃,应变速率0.001~10s-1条件下的高温压缩变形行为,并根据应力-应变曲线建立了合金的加工图.研究结果表明:合金在两相区温度变形,应力-应变曲线呈现流变软化特征;而在单相温度区和高应变速率下,合金表现出间断的屈服现象.合金适宜的加工条件为T=700~850℃,(ε)=0.01~0.001s-1与T=850~900℃,(ε)=1~10s-1.合金热加工失稳区为T=700~750℃,应变速率为0.1~10s-1区域.  相似文献   

12.
基于数理统计方法的TB6钛合金本构关系   总被引:1,自引:0,他引:1  
采用Thermecmaster-Z型热模拟试验机对TB6钛合金在800~1150℃、0.001~10 S<'-1>条件下进行等温恒应变速率压缩试验.通过分析TB6钛合金在不同热变形条件下的真应力-真应变曲线,并在综合考虑应变速率、变形温度和应变量对流动应力影响的基础上,建立了TB6钛合金的本构关系.误差分析表明,所建的本构关系具有较好的精度,能较好地反映TB6钛合金的热变形行为特征.  相似文献   

13.
使用Gleeble-3500热模拟试验机在变形温度为800~1000℃、应变速率0.001~10 s~(-1)以及真应变为1.2的条件下对TB17钛合金进行热变形行为研究。根据热压缩数据,分析真应力-真应变曲线,计算TB17钛合金变形激活能,并建立了TB17钛合金应力-应变本构模型,对金相组织进行分析,并进行了本构模型的验证。结果表明,TB17钛合金在热压缩变形过程中,出现动态回复和动态再结晶现象,在低应变速率0.001和0.01 s~(-1)下,以动态再结晶为主要软化机制,在高应变速率1和10 s~(-1)下主要以动态回复为软化机制;流变应力随应变速率的下降和变形温度的升高而降低;峰值应力计算值和实验值的平均误差为6.5%,表明该模型有很高的精确度。研究为TB17钛合金塑性加工过程的模拟和控制提供了参考。  相似文献   

14.
李妮  赵飞  叶萃  李军帅 《热加工工艺》2015,(2):41-43,46
采用Gleeble热模拟试验机,对锻态TB6钛合金在变形温度660~1050℃,应变速率0.001~0.1s-1的条件下进行等温恒应变速率压缩试验,研究了TB6钛合金的高温压缩变形行为。基于Prasad判据绘制了该合金的热加工图,结合变形微观显微组织分析,确定了该合金在(α+β)两相区至β相区的最佳工艺参数。结果表明:当应变速率0.01~0.1s-1,变形温度980℃时,其变形机制为动态回复,失稳现象不明显。最终确定了应变速率为0.001~0.1 s-1,变形温度为815℃左右,为该合金的最佳热加工工艺参数。  相似文献   

15.
分别反映金属流变应力特征和组织-变形关系的本构关系和第二类再结晶全图是TC18钛合金热加工工艺制订的关键数据。在Gleeble3800热模拟试验机上,对于TC18钛合金进行系列热压缩变形,其中,变形温度为790℃~900℃,应变速率为0.01s-1~10s-1,应变量为0.1~0.5。通过拟合Arrhenius式中α, n, Q, lnA与ε的六次多项式,建立了材料高温热压缩本构方程,热压缩流变应力预测值与实验值吻合良好;通过组织观察及α晶粒尺寸测算绘制出其各应变速率下的第二类再结晶全图。  相似文献   

16.
在Gleeble-3800热模拟机上对锻态β-CEZ钛合金在变形温度800~1000℃、应变速率0.01~10 s-1、变形程度70%的参数下进行了热模拟试验。根据真应力—真应变曲线研究了变形温度和应变速率对应力的影响,利用Arrhenius双曲正弦方程和Z参数建立了β-CEZ钛合金热变形本构方程。结果表明:β-CEZ钛合金的流变应力与变形速率成正比,与变形温度成反比;在试验条件下β-CEZ钛合金表现出动态回复和动态再结晶两种软化机制。误差分析表明,建立的热变形本构方程与试验值基本一致,能为β-CEZ钛合金有限元模拟及变形工艺选取提供理论依据。  相似文献   

17.
本文利用Gleeble 3800热模拟试验机和电子背散射衍射(EBSD)技术研究了TB18钛合金在700℃~ 900℃、应变速率0.01~10 s-1时的热变形行为和动态再结晶机制。研究表明该合金的流动应力大小对应变速率和变形温度敏感。变形初期流动应力皆在达到峰值应力后快速软化,随后有不同程度的上升。通过数据回归得到了该合金在两相区和单相区的高温变形Arrhenius型本构方程,其变形激活能分别为340 kJ/mol和185 kJ/mol。其单相区的变形软化机制主要为β相的动态回复,两相区主要为β相的动态再结晶。结合了EBSD技术,金相观察和流变曲线特点的分析表明,在高变形温度,低应变速率时(900℃,0.01s-1)主要以几何动态再结晶(GDRX)为主。在温度较低,或变形速率较高下,变形初期发生不连续动态再结晶(DDRX),应变增大后发生连续动态再结晶(CDRX)。  相似文献   

18.
利用人工神经网络(ANN)模型来建立钛合金本构关系以及TB8钛合金热压缩试验数据,采用误差反向传播(Error Back-Propagation Networks)算法模拟了流变应力。结果表明:TB8钛合金在较宽泛温度948~1073K,应变速率在0.001~10s-1含有两个节点数为18的隐含层BP神经网络模型,这为研究TB8钛合金高温塑性变形行为提供了依据。对不同相区不同变形机制的TB8钛合金应力应变行为进行精确表征,训练阶段,最大绝对相对误差3.78%。在验证阶段,最大绝对相对误差4.06%,且大部分相对误差点分布在±2%的范围内,实现了较高的精度。  相似文献   

19.
铸态TB6钛合金β相区热变形行为的研究   总被引:1,自引:1,他引:0  
采用Thermecmastor-Z型热模拟试验机对铸态TB6钛合金在真应变为0.92、变形温度为950~1100℃、应变速率为0.001~10 s-1的条件下进行等温恒应变速率压缩试验,研究了该合金在β单相区的热变形行为及变形机制.结果表明,该合金的流动应力曲线主要呈流动震荡和流动软化两种特征.在0.001~0.01 s-1时,流动曲线呈小幅度流动震荡;而在10 s-1时,流动曲线呈大幅度流动震荡;在0.1~1 s-1时,流动曲线呈流动软化特征.通过微观组织观察可知:当应变速率为0.001 s-1时的变形机制为动态再结晶;在0.01~1 s-1时的变形机制主要为动态回复;在10 s-1时的变形机制为局部流动.从细化组织和降低变形抗力方面考虑,应变速率以不超过0.1 s-1为宜.  相似文献   

20.
通过对低成本Ti-6Al-2.5V-1.5Fe-0.15O合金热模拟压缩试验,得到了合金在不同高温变形条件下的真应力-应变曲线。结果表明,在β单相区应力-应变曲线呈现动态回复特征,在α+β两相区呈现典型动态再结晶曲线特征。变形组织由α相以及少量的β相构成,层片α相发生球化,随着变形温度升高,球化率降低,再结晶晶粒长大。在低应变速率变形时,流变应力软化机制以α相动态球化为主,高应变速率变形时除了球化外,片状α相周围有细小的再结晶晶粒形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号