首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国钼业》2011,(1):41-41
一种钼尾渣、硫酸渣复合铁矿球团,它是由30~60重量份的钼尾渣、20~30重量份的硫酸渣、20~40重量份的磁铁矿粉和1~3重量份粘结剂,经混匀、造球、焙烧制备而成。首先将钼尾渣和硫酸渣粗料进行细磨后选矿,矿石粒度≤0.074mm的含量≥85%,然后与磁铁矿粉混合,添加粘结剂,加水混匀,经造球、干燥后在1000~1100℃下焙烧25~35min,冷却即得成品。这种复合球团矿有效利用了工业生产的废弃物,改善了环境,为我国钢铁生产提供二次含铁原料。  相似文献   

2.
由中南工业大学李洪桂教授等研究的“选择性沉淀法从钨酸盐溶液中除钼、砷、锑、锡新工艺”已在国内5家钨冶炼厂成功使用,并取得良好的经济效益。最近,我们又进行了大量工作,对沉淀剂M115做了进一步的改性处理,使本工艺的各项指标有了进一步的改进和完善,整个研究工作取得新的进展。在工业规模下的指标为:对从钨酸铵溶液中除钼,除钼前溶液中含Mo0.56~1.75g/L,WO3/Mo为100~300,除钼后净液中含Mo0.01~0.018g/L,WO3/Mo为11000~16000,除钼率97%~99%,产品APT中钼含量…  相似文献   

3.
选择性沉淀法从钨酸钠溶液中除钼   总被引:3,自引:0,他引:3  
在分子设计理论和方法指导下,借助于钨钼化合物的性质差异,设计并合成了从钨酸盐溶液中选择性沉淀除钼的M115-a、M115-b等四种沉淀剂。采用由化学试剂配制而成的含钼钨酸钠溶液及工业粗钨酸钠溶液进行选择性沉淀除钼工艺验证试验,结果表明,四种沉淀剂可分别在不同程度上选择性沉淀除钼,但以M115-a的除钼效果最好,对含Mo0.6~1.4g/L的料液,其除钼率可达94%~99%,除钼过程钨回收率大于99  相似文献   

4.
以某厂含钼5.0~6.0 g/L、WO3为120~160 g/L的反萃液为原料液,经硫化后,加入一种国产的特种树脂进行吸附沉淀除钼。研究了料液pH、树脂可交换活性基团、反应固液以及反应时间对钨钼分离效果的影响,研究了除钼反应后WO3的洗脱和树脂的解吸,以及特种树脂的循环使用性能。结果表明:除钼反应前无需调节料液pH;Cl型树脂的钨钼分离效果优于CO3型树脂;增加反应固液比能提高钨钼分离效果;最佳除钼反应时间为2.5 h;除钼反应后增加洗脱步骤可以显著提高WO3收率。在最佳条件下,特种树脂的除钼率可达96%~97%,WO3回收率96%~98%,除钼后溶液中Mo/WO3低于0.2%,钨钼分离系数稳定在30左右,钨钼分离效果良好。  相似文献   

5.
采用氧化焙烧脱硫、除碳—碳酸钠溶液浸出钼—浸钼渣氰化提金新工艺处理某金钼混合精矿。结果表明,在下述最佳试验条件下:粗精矿于600℃氧化焙烧1.5h、钼焙砂加入矿重40%的碳酸钠后按液固比3~4在80~90℃浸出1.0~1.5h,钼浸出率为91%,浸钼渣金的氰化浸出率大于95%。  相似文献   

6.
研究了用常压碱浸法从某APT厂除钼渣中回收钨、钼、铜,考察了氢氧化钠用量、浸出温度、反应时间、液固体积质量比对钨、钼浸出率的影响。试验结果表明,在氢氧化钠用量为理论量、反应时间为60min、浸出温度为80℃、液固体积质量比为3∶1条件下,钨、钼浸出率分别为98.2%和98.3%,而铜以CuS形式留在渣中。  相似文献   

7.
二次氨浸工艺中,将氨浸渣中不溶钼转化为可溶钼,提高钼回收率。以NH4CO3、NH4HCO3为转化剂、为强氧化剂,分别研究转化剂与氧化剂、反应温度的协同作用规律,利用缩芯模型、化学反应动力学进行解析。结果表明:在相同条件下,温度为60℃时加入碳酸铵、适量次氯酸钠,氨浸渣中可溶钼含量最低为1.64%。利用缩芯模型原理,深度转化一次氨浸渣,可有效提高钼化工中金属钼的回收率。  相似文献   

8.
现在通用的处理钼焙砂工艺流程是焙砂在氨水中溶解.氨溶焙烧钼的产物可使75—85%的钼(依焙砂成分不同)转移到溶液中.剩余的金属集中在氨浸渣中.因此需要对氨浸渣进一步处理以便回收剩余的金属.氨浸渣组成(%重量):Mo 15~20,其中氧化钼为 13~18;Fe 5~10:SiO_2 50~60,Cu 2~4,Ca 1~3,S(总)0.5~1.5;H_2O 10~15.浸渣中钼以正钼酸钙、钼酸铜、钼酸铁和部分未烧透的MoS_2形式存在.在选择合理的处理含钼浸渣流程时必须注意浸渣中铁的含量高,给钨钼分离带来很大困难.因此,目前所采用的钼焙砂氨浸渣补充回收钼的工艺流程可分为两类,第一类  相似文献   

9.
以甘肃某金矿经细菌氧化提金后产生的高砷、高铁强酸性细菌氧化液为研究对象,并选择CaO作为沉淀剂进行中和除砷实验,考察pH值、温度、搅拌速度和反应时间等对中和除砷的影响,通过单因素实验确定最佳除砷条件,并探究在模拟自然环境下各因素对砷钙渣稳定性的影响。除砷实验结果表明:在pH=4~5、搅拌速度适宜及常温下反应25 min时,除砷率可达99.99%,实现了废水净化;砷钙渣定量分析结果表明:渣中As、Fe质量分数分别为4.04%和19.79%;模拟自然环境下砷钙渣稳定性影响实验结果表明:当环境pH≤1时,砷钙渣中的砷被溶出了5 mg/L,超过工业废水排放标准。通过试验发现,选择CaO作为沉淀剂对细菌氧化液进行中和除砷,可以实现废水净化,并且当含砷渣所处环境pH≥1时可以稳定存放。  相似文献   

10.
除钼渣是钨冶炼过程中钨钼分离产生的产物,主要含有钼铜等有价金属。试验采用"NaOH漫出钼—加压氧化浸出铜"工艺,研究了温度、时间、NaOH耗量、液固比等因素对NaOH漫出钼过程的影响,试验结果表明:温度40℃,时间1.5 h,NaOH耗量50%,液固比3/1,钼漫出率可达99.8%,经过加压氧化漫出铜,铜漫出率为99.6%,除钼渣得到了高效综合利用。  相似文献   

11.
研究了氮气保护500 g Fe-1.80%~3.50%[C]熔体在1300~1500℃时对不同方法加料MoO_3的还原反应。结果表明,≤1 400℃,无渣条件下,粉状MoO_3还原速度较球团状MoO_3快,熔体[C]是影响MoO_3还原的主要因素,当[C]约为2%时,钼收得率可达96%;在有渣条件下,熔体温度对MoO_3还原反应的影响较大,温度升高,MoO_3的还原速度提高,1500℃时1.80%[C]熔体的钼收得率达100%。转炉冶炼含钼钢时,宜采取合适措施向铁水中加入粉状MoO_3后随即造流动性良好的渣,以利快速还原MoO_3,提高Mo的收得率。  相似文献   

12.
研究了一种从彩钼铅粗精矿碱性浸出液中回收钼的新工艺。该工艺涉及镁盐除硅、N235萃取钼、氨水溶液反萃取钼、盐酸沉淀钼等工序。试验结果表明:在溶液中ρ(Mo)=9.2g/L、ρ(SiO2)=1.01g/L,除硅温度75℃,pH=8.5,反应1h,氯化镁加入量为理论量4倍条件下,除硅率达87.31%;以15%N235-10%仲辛醇-75%煤油溶液作为萃取剂、在Va∶Vo=2.5∶1、pH为1.7~2.0条件下,混合萃取3min,钼的3级逆流萃取率为99.55%;经反萃取和沉淀钼,最终获得钼质量分数64%以上的氧化钼产品。该工艺钼回收率高,除硅效果较好。  相似文献   

13.
目前钨冶炼的主流除钼工艺是选择性沉淀法。基于钼亲硫钨亲氧的特点,硫离子优先与钼酸根反应生成硫代钼酸根,然后与铜的化合物反应生成沉淀,从而实现选择性除钼。针对这种除钼渣,基于现有的热力学数据,进行了相关的热力学计算,绘制了25℃的lgc-pH图。分析表明,钼的选择性沉淀渣在pH10.5时才能生成, pH降低除钼效果会更好。相应的,除钼渣在较强的碱性条件下可有效浸出,随pH升高,钼所结合的硫逐渐被氧取代,形态逐渐由四硫代钼酸根向钼酸根转变:MoS■, MoOS■, MoO_2S■, MoO_3S~(2-), MoO■。而硫主要以硫离子的形态存在于溶液中。若体系中存在化学计量的铜离子,则pH9时钼即全部以MoO■的形态进入溶液,铜以硫化物形态进入渣中。铜离子参与浸出的过程为钼的硫化过程的逆过程,称之为反硫化。反硫化浸出使除钼渣中的硫整体转变成为硫化铜渣而把硫固定下来;钼以及少量的钨成为含氧酸根离子进入溶液,有利于进一步回收。  相似文献   

14.
采用氧压-碱浸镍钼矿,在简要介绍和分析试验原理的基础上,以钼浸出率为考察指标,重点探讨加碱量、温度、时间、液固比、矿物粒度等参数对钼浸出率的影响。试验结果表明:在NaOH为100 g/L、Na_2CO_3/镍钼矿质量比为30%、反应温度100℃、反应时间5 h、液固比3∶1、粒度0.074~0.058 mm条件下,钼浸出率可达97%以上,Ni在浸出渣中含量提高1.43%以上,钼在浸出渣中含量可降低至0.78%以下,有效实现了镍钼矿中的镍、钼分离。  相似文献   

15.
介绍了国外从斑岩铜矿中回收钼的主要矿山和进行铜、钼浮选分离的主要方法。乌努格吐山大型斑岩铜钼矿选矿通过小型试验和前期工业试验,找出了工业生产中存在铜钼混合精矿脱水脱药不理想、陶瓷过滤机无法过滤-325目含量占88%铜精矿的问题。最后经过尝试,用原有陶瓷过滤机过滤混合精矿,脱水脱药效果明显,并使用加压过滤机过滤铜精矿,解决了陶瓷过滤机无法过滤细粒级铜精矿的难题。选矿工艺流程经改造后,试生产连续产出了合格的钼精矿,钼精矿品位为48%、含铜1.2%。同时,对铜、钼分离工艺中的一些主要问题进行了分析讨论。  相似文献   

16.
在生产钼酸钠的过程中,都存在着含Mo3%~10%的碱浸渣中钼的回收问题.用苏打加氧化剂焙烧热水浸出工艺可有效地回收其中的钼.除硅结晶钼酸钠,含Mo≥39%,水不溶物<0.03%;用氯化钙溶液沉淀钼酸钙,含Mo>40%,母液残M0<1g/L;用氯化钡溶液沉淀钼酸钡,含Mo>29%,母液残Mo<0.03g/L.钼的总回收率均可大于70%.(寿庭木摘)  相似文献   

17.
任萌  李佳  朱常桂  刘锦洪 《湿法冶金》2011,(3):237-239,251
研究了以硝酸溶液为沉淀剂,从U-10%Mo合金中选择性沉淀分离铀和钼,考察了硝酸浓度、硝酸过量系数对铀、钼分离的影响。试验结果表明:在n(HNO3)/n(Mo)一定条件下,硝酸浓度对铀溶解率影响较小;随n(HNO3)/n(Mo)增大,铀溶解率增大至95.2%,钼沉淀率先降低后升高,铀钼分离系数(β)先减小后增大;[HNO3]≥12 mol/L时,n(HNO3)/n(Mo)≥94有利于铀钼分离,且工艺上容易实现。  相似文献   

18.
针对非标钼精矿,利用热压碱浸过程中硫剧烈氧化释放热量进行自热反应,在碱用量为钼精矿质量的1.2%、液固比7、搅拌强度750r/min、充氧气、总压1.6MPa、温度160℃条件下浸出2h,钼浸出率为96.94%,氧化渣含钼可降到5%左右。自热氧化渣经一次粗选一次扫选两次精选后,可获得产率15.30%、钼品位36.30%、回收率89.18%的钼精矿,浮选尾矿钼品位可降到0.40%。氧化渣浮选精矿按50%比例返回自热浸出,钼浸出率可达96.17%。自热浸出—浮选联合工艺可将钼精矿中钼的回收率提高到99.48%以上。  相似文献   

19.
肖超  吴海国 《中国钼业》2012,36(6):25-28
针对某地APT厂堆存的除钼渣的特点,提出采取碱性浸出-硫化沉钼-人造白钨的工艺,提取其中的铜、钼、钨。系统地考察了碱浸工序的工艺参数,确定碱性浸出的最佳条件。结果如下:碱用量为除钼渣的50%,添加剂A用量为除钼渣的5%,液固比L/S=3/1,温度为70℃,时间为3h,钨钼浸出分别为99.12%和98.42%,铜保留率~100%。对浸出液采用硫化沉钼,钼的沉淀率达到98.03%,钨的沉淀率为4.19%。沉钼后液采用人造白钨,钨的沉淀率达98.29%,产品WO,品位达50.10%。  相似文献   

20.
针对陕西某钼选厂精选尾矿中难选微细粒辉钼矿不能充分回收和利用的问题,通过采用铜钼混浮-铜钼分离原则流程,利用旋流-静态微泡浮选柱对其进行了再选回收试验研究。工业生产实践表明:采用旋流-静态微泡浮选柱能够获得钼品位31.096%,回收率62.71%的钼精矿产品,年创造利润2 078.22万元,提高了矿产资源的综合利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号