首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
An outline of the mechanistic model of convective and microwave drying of saturated capillary-porous materials is presented. The model was derived in the framework of irreversible thermodynamics. Particular attention is devoted to construction of the term describing the power of microwave radiation absorbed per unit volume, which is converted into internal heat source. The qualitative difference in distribution of temperature, moisture content, and the drying-induced stresses in materials under convective and microwave drying is illustrated in the examples of cylindrical kaolin samples. The diagrams of acoustic emission are taken off on-line from these samples in order to illustrate the development of material destruction caused by the stresses induced during both convective and microwave drying.  相似文献   

2.
Abstract

An outline of the mechanistic model of convective and microwave drying of saturated capillary-porous materials is presented. The model was derived in the framework of irreversible thermodynamics. Particular attention is devoted to construction of the term describing the power of microwave radiation absorbed per unit volume, which is converted into internal heat source. The qualitative difference in distribution of temperature, moisture content, and the drying-induced stresses in materials under convective and microwave drying is illustrated in the examples of cylindrical kaolin samples. The diagrams of acoustic emission are taken off on-line from these samples in order to illustrate the development of material destruction caused by the stresses induced during both convective and microwave drying.  相似文献   

3.
The aim of the article is to study the effectiveness of convective and microwave drying with respect to drying time and stress generation in clay-like dried bodies. The theoretical analysis of stresses was confined to the constant drying rate period because clay shrinks and the stresses are generated mainly in this period. The theoretical prediction of stress development was validated using an acoustic emission method by monitoring the micro- and macrocracks formation caused by the stresses. Apart from the stress analysis, the combined convective-microwave drying was examined experimentally during whole process in order to show that the volumetric heat supply due to microwave heating enhances convective drying and, apart from this, such a combined drying process develops less stress in dried material. The theoretical and experimental studies were performed on a kaolin sample in the form of a thin plate.  相似文献   

4.
《Drying Technology》2008,26(1):64-77
The aim of the article is to study the effectiveness of convective and microwave drying with respect to drying time and stress generation in clay-like dried bodies. The theoretical analysis of stresses was confined to the constant drying rate period because clay shrinks and the stresses are generated mainly in this period. The theoretical prediction of stress development was validated using an acoustic emission method by monitoring the micro- and macrocracks formation caused by the stresses. Apart from the stress analysis, the combined convective-microwave drying was examined experimentally during whole process in order to show that the volumetric heat supply due to microwave heating enhances convective drying and, apart from this, such a combined drying process develops less stress in dried material. The theoretical and experimental studies were performed on a kaolin sample in the form of a thin plate.  相似文献   

5.
The drying process of crude cotton fabric is analyzed under two main aspects: analysis of moisture distribution inside the textile sheet, and analysis of certain operational convective drying process variables. Experimental apparatus consisted of a drying chamber in which samples of pure cotton textile were suspended inside the drying chamber and exposed to a convective hot air flow. The influence of the operational variables on the drying process behavior was studied by two different ways with generalized drying curves. The behavior of moisture distribution profiles was compared to average moisture content of the textile fabric verifying whether average values were able to represent the textile moisture content during the drying process.  相似文献   

6.
Dependency of absorbed power by microwave on the local moisture content in a glass particle layer was measured with a new method; that is, heating the wet layer. The heating experiment was performed using a laboratory-scale combined convective and microwave heater/dryer that was manufactured by modifying a domestic microwave oven at 2.45 GHz. The measured result was strongly dependent on the local moisture content and showed a maximum and a minimum within the measured range of the moisture content. This dependency can be explained by the assumption that moisture in the wet layer behaves as a mass of the free water. The combined drying rate of the wet layer measured with the heater/dryer was simulated with both the power dependency and the experimental convective-only drying rate. Power dependency on temperature is as important as the moisture content in the simulation. Simulated results agree very well with experimental ones.  相似文献   

7.
A three-dimensional model is proposed to describe the heat and mass transport process in drying of wood. The model is based on conservation of mass and energy and uses constant parameters obtained by comparing experimental data with numerical results. The model uses parameter values from literature. Experimental results obtained for temperature profiles during drying of a block of beech wood are compared with the model results. Satisfactory agreement is obtained over a range of drying air temperatures and velocities.  相似文献   

8.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction.  相似文献   

9.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction.  相似文献   

10.
《Drying Technology》2013,31(1-2):387-396
Abstract:

In order to design, manufacture, and commission a commercial dryer to dry individually quick frozen (IQF) wild blueberries (Vaccinium angustifolium), The Nova Scotian Fruit Company completed a series of experiments to characterize the effect of air velocity, air temperature, and packed bed depth on drying. Based on previous experience with forced air packed bed drying systems at air temperatures up to 65°C, the experiments focused on measuring the effect of air temperature and velocity during the first few hours of drying. The data collected suggest that drying occurs solely in the falling rate period. These data were used to successfully design, build, and commission a commercial dryer with a tenfold increase in production capacity over previous equipment.  相似文献   

11.
12.
The effects of drying parameters on heat transfer during drying of fermented ground cassava in a rotary dryer were studied. The fermented ground cassava was dried in a bench-scale rotary dryer at different inlet air temperatures, inlet air velocities, relative humidities, feed rates, drum drive speeds, and feed drive speeds. It is shown that inlet air temperature, inlet air velocity, and feed rate have significant effects on the specific heat transfer coefficient and heat load in the material. Models that predict the specific heat transfer coefficient as a function of inlet air temperature and inlet air velocity and the heat load as a function of inlet air temperature, inlet air velocity, and feed rate are also presented. Predictions of the models are compared with experimental data and good agreement is obtained.  相似文献   

13.
The impact of microwave drying on the quality of dried wood remains unclear. Particular attention should be paid in order to optimize the combined microwave and convective drying process. In this study, a comprehensive internal heat and mass transfer model was developed and numerically implemented in order to simulate and understand the physical phenomena occurring inside Jack pine wood during a combined microwave and convective drying process. The model was validated on the basis of the average moisture content curves for drying scenarios at various microwave power levels. According to the simulations results, an increase in microwave power significantly decreases the drying time of Jack pine wood and increases its internal gas pressure, which increases the risk of cracking. However, compared to purely conventional convective drying, combined microwave and convective drying at medium microwave power and air temperature significantly reduces the drying time and maintains the internal gas pressure at reasonable values. At these conditions, the risk of cracking will be diminished. This last result was checked via experimental measurements of the sample strength dried at different microwave power levels. From this study, we can consider that for Jack pine wood, combined microwave and convective drying is a more efficient technology compared to classical convective drying.  相似文献   

14.
Drying-induced stresses in elastic and viscoelastic saturated materials   总被引:1,自引:0,他引:1  
The paper presents a theoretical analysis of stresses generated during convective drying of kaolin, based on elastic and viscoelastic models. The equations of these models were solved analytically for a cylindrically shaped sample; the distribution and evolution of the radial and circumferential stresses are illustrated in diagrams. The acoustic emission method was used in experimental tests for identification on line of the time period during which the stresses reach their maximal values. A better correlation has been found between the experimental tests and the theoretical predictions obtained on the basis of the viscoelastic model.  相似文献   

15.
Intergranular air movement and its relation with moving drying fmnt in a grain bulk were investigated experimentally. An improved computer simulation model was developed to analyze the drying or cooling process in a bed of grain with non-parallel airflow from a partially or slanted perforated floor. The model first simulates the airflow, then calc lates the heat and mass transfer between air and grain along the airflow streamlines. The results were compared with the simulated and experimental results from a fully perforated floor configuration. The degree of agreement between the computed and the experimental moisture contents depended upon the floor configuration. The model was not capable of predicting the temperatures to the accuracy of the predicted moisture contents, especially when airflow stream lines were not parallel to each other. For further improvement of the drying simulation model, an improved airflow model and computer program is required. Comparison of the simulated results with experimental data also  相似文献   

16.
ABSTRACT

Intergranular air movement and its relation with moving drying fmnt in a grain bulk were investigated experimentally. An improved computer simulation model was developed to analyze the drying or cooling process in a bed of grain with non-parallel airflow from a partially or slanted perforated floor. The model first simulates the airflow, then calc lates the heat and mass transfer between air and grain along the airflow streamlines. The results were compared with the simulated and experimental results from a fully perforated floor configuration. The degree of agreement between the computed and the experimental moisture contents depended upon the floor configuration. The model was not capable of predicting the temperatures to the accuracy of the predicted moisture contents, especially when airflow stream lines were not parallel to each other. For further improvement of the drying simulation model, an improved airflow model and computer program is required. Comparison of the simulated results with experimental data also  相似文献   

17.
This paper explores the use of acoustic emission (AE) and X-ray tomography to identify the mechanisms of damage and the fracture process during compressive loading on concrete specimens. Three-dimensional (3D) X-ray tomography image analysis was used to observe defects of virgin mortar specimen under different compressive loads. Cumulative AE events were used to evaluate damage process in real time according to the sand/cement ratio. This work shows that AE and X-ray tomography are complementary nondestructive methods to measure, characterise and locate damage sites in mortar. The effect of the sand proportion on damage and fracture behaviour is studied, in relation with the microstructure of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号