首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein geranylgeranyltransferase I from the eyes of Penaeus japonicus geranylgeranylates predominantly the sequence CFFL and Drosophila-specific Ras1 carboxyl termini, with the sequence CKML, as well as mammalian-specific G gamma carboxyl termini, with the sequence CAIL, but not the protein farnesyltransferase-specific sequence CVLS. The purified protein geranylgeranyltransferase I from shrimp was evidenced by immunoblotting and polyacrylamide gel electrophoresis under denaturing conditions to consist of single subunit of Mr 66,000 +/- 500. Since the active protein geranylgeranyltransferase I was found to have a relative mass of 67,000 +/- 1,000, the purified enzyme was deduced to be a monomer. The enzyme had an optimal pH of 8.0 with 100 mM Tris as the buffer and a K(m) of 7 +/- 2 microM with the synthetic peptide KCFFL as the substrate. The enzyme was inhibited by Zn++ and Mg++ ions at micromolar concentrations.  相似文献   

2.
From a brain cDNA library of Bombyx mori, we cloned cDNA for BRab, which encoded a 202-amino-acid polypeptide sharing 60-80% similarity with rab1 family members. To characterize its biochemical properties, cDNA for BRab was inserted into an expression vector (pGEX2T) and expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. The recombinant protein was purified to homogeneity with glutathione S-Sepharose. The purified GST-BRab bound [35S]-GTP gamma S and [3H]-GDP with association constants of 1.5 x 10(6) M-1 and 0.58 x 10(6) M-1, respectively. The binding of [35S]-GTP gamma S was inhibited with GTP and GDP, but with no other nucleotides. The GTP-hydrolysis activity was evaluated to be 5 m mole/min/mole of BRab. In the presence of 6 mM MgCl2, bound [35S]-GTP gamma S and [3H]-GDP were exchanged with GTP gamma S most efficiently. These results suggest that BRab, having a higher affinity for GTP than GDP, converts from the GTP-bound state into the GDP-bound state by intrinsic GTP hydrolysis activity and returns to the GTP-bound state with the exchange of GDP with GTP.  相似文献   

3.
GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates feedback inhibition of GTP cyclohydrolase I activity by tetrahydrobiopterin and also mediates the stimulatory effect of phenylalanine on the enzyme activity. To characterize the molecular structure of GFRP, we have purified it from rat liver using an efficient step of affinity chromatography and isolated cDNA clones, based on partial amino acid sequences of peptides derived from purified GFRP. Comparison between the amino acid sequence deduced from the cDNA and the N-terminal amino acid sequence of purified GFRP showed that the mature form of GFRP consists of 83 amino acid residues with a calculated Mr of 9,542. The isolated GFRP cDNA was expressed in Escherichia coli as a fusion protein with six consecutive histidine residues at its N terminus. The fusion protein was affinity-purified and digested with thrombin to remove the histidine tag. The resulting recombinant GFRP showed kinetic properties similar to those of GFRP purified from rat liver. Cross-linking experiments using dimethyl suberimidate indicated that GFRP was a pentamer of 52 kDa. Sedimentation equilibrium measurements confirmed the pentameric structure of GFRP by giving an average Mr of 49,734, which is 5 times the calculated molecular weight of the recombinant GFRP polypeptide. Based on the pentameric structure of GFRP, we have proposed a model for the quaternary structure of GFRP and GTP cyclohydrolase I complexes.  相似文献   

4.
5.
Based on the results obtained from GTP overlay assay, immunoprecipitation, two dimensional electrophoresis and radiolabeled GTP binding, we provide evidence that the bona fide subunit of Complex I, the long known 24 kDa protein is a G protein. Bacterially expressed 24 kDa protein with additional N-terminal methionine and alanine residues or naturally expressed truncated isoform fail to bind GTP suggesting that secondary modification/ processed N-terminal end is necessary for GTP binding. Competitive inhibition of binding of radiolabeled GTP to electroblotted 24 kDa protein with unlabelled nucleotides showed that the protein binds GTP and GDP with high affinity in presence of Mg2+, and has decreased to very low affinity for ITP, CTP, GMP and UTP. A comparative binding of [gamma-35S]-GTP to Complex I and 24 kDa protein (electroblotted) suggests that the GTP binding in the native Complex is solely due to 24 kDa protein. Further, four fold difference in the binding affinities between native Complex I and 24 kDa protein (electroblotted) as seen by Scatchard analysis of the binding data indicates that protein undergoes structural rearrangement in Complex I bound form, that presumably triggers divalent cation dependent GTPase activity in native complex. We were unable to detect the effect of GTP/ GDP on the ubiquinone/ferricyanide reductase activity. Since the subunit is found missing in tissues affected by mitochondrial respiratory chain diseases, we presume that the subunit has regulatory role in the Complex I function in the electron transport chain.  相似文献   

6.
Ral GDP dissociation stimulator (RalGDS), a putative effector protein of Ras, stimulated the GDP/GTP exchange reaction of the post-tanslationally lipid-modified but not the unmodified form of Ral in response to epidermal growth factor in COS cells. The RalGDS action on Ral was enhanced by an active form of Ras but not a Ras mutant which was not post-translationally modified in the cells. The RalGDS activity was inhibited by acidic membrane phospholipids such as phosphatidylinositol and phosphatidylserine but not by phosphatidylcholine or phosphatidylethanolamine in vitro. The post-translationally modified form but not unmodified form of Ras, Ral, and Rap were incorporated in liposomes consisting of these phospholipids. When Ral was incorporated alone in the liposomes, RalGDS did not stimulate the dissociation of GDP from Ral. When Ral was incorporated with the GTP-bound form of Ras in the liposomes, RalGDS stimulated the dissociation of GDP from Ral, while the GDP-bound form of Ras did not affect the RalGDS action. The Ras-dependent Ral activation through RalGDS required the Ras-binding domain of RalGDS. Rap, which shared the same effector loop as Ras, also stimulated the dissociation of GDP from Ral through RalGDS in the liposomes, although Rap did not enhance the RalGDS action in COS cells. Taken together with our previous observations that Ras recruits RalGDS to the membrane, these results indicate that the post-translational modifications of Ras and Ral are important for Ras-dependent Ral activation through RalGDS and that colocalization of Ras and Ral on the membrane is necessary for Ral activation in intact cells.  相似文献   

7.
The oncoprotein Ras transforms cells by binding to one or more effector proteins. Effector proteins have been identified by their ability to bind to Ras in the GTP but not GDP form, and by their requirement for the Ras effector domain for binding. The best understood Ras effectors are serine/threonine kinases of the Raf family, but other candidate Ras effectors, including a Ral guanine nucleotide dissociation stimulator and phosphatidylinositol 3-kinase (PI3 kinase) have also been identified. To investigate the mechanism of binding of cRaf-1 to Ras, and to investigate the roles of other candidate Ras effectors in transformation, we have isolated and characterized mutants of activated Ras with decreased binding to cRaf-1 relative to other candidate effectors. Examination of these mutants indicates that surface-exposed residues of Ras outside the minimal effector domain interact differentially with cRaf-1 and other Ras-binding proteins, and that fibroblast transformation correlates with cRaf-1 binding and mitogen-activated protein (MAP) kinase activation. Furthermore, activation of PI3 kinase can occur in the absence of significant MAP kinase activation, suggesting that PI3 kinase activation is a primary effect of Ras.  相似文献   

8.
Mutated, tumorigenic Ras is present in a variety of human tumors. Compounds that inhibit tumorigenic Ras function may be useful in the treatment of Ras-related tumors. The interaction of a novel GDP exchange inhibitor (SCH-54292) with the Ras-GDP protein was studied by NMR spectroscopy. The binding of the inhibitor to the Ras protein was enhanced at low Mg2+ concentrations, which enabled the preparation of a stable complex for NMR study. To understand the enhanced inhibitor binding and the increased GDP dissociation rates of the Ras protein, the conformational changes of the Ras protein at low Mg2+ concentrations was investigated using two-dimensional 1H-15N HSQC experiments. The Ras protein existed in two conformations in slow exchange on the NMR time scale under such conditions. The conformational changes mainly occurred in the GDP binding pocket, in the switch I and the switch II regions, and were reversible. The Ras protein resumed its regular conformation after an excess amount of Mg2+ was added. A model of the inhibitor in complex with the Ras-GDP protein was derived from intra- and intermolecular NOE distance constraints, and revealed that the inhibitor bound to the critical switch II region of the Ras protein.  相似文献   

9.
The majority of the GTP-binding proteins of the Ras superfamily hydrolyze GTP to GDP very slowly. A notable exception to this are the Rac proteins, which have intrinsic GTPase rates at least 50-fold those of Ras or Rho. A protein (or proteins) capable of inhibiting this GTPase activity exists in human neutrophil cytosol. Since Rac appears to exist normally in neutrophils as a cytosolic protein complexed to (Rho)GDI, we examined the ability of (Rho)GDI to inhibit GTP hydrolysis by Rac. (Rho)GDI produced a concentration-dependent inhibition of GTP hydrolysis by Rac1 that paralleled its ability to inhibit GDP dissociation from the Rac protein. Maximal inhibition occurred at or near equimolar concentrations of the GDI and the Rac substrate. The ability of two molecules exhibiting GTPase activating protein (GAP) activity toward Rac to stimulate GTP hydrolysis was also inhibited by the presence of (Rho)GDI. The inhibitory effect of the GDI could be overcome by increasing the GAP concentration to levels equal to that of the GDI. (Rho)GDI weakly, but consistently, inhibited GTP gamma S (guanosine 5'-3-O-(thio)triphosphate) dissociation from Rac1, confirming an interaction of (Rho)GDI with the GTP-bound form of the protein. These data describe an additional activity of (Rho)GDI and suggest a mechanism by which Rac might be maintained in an active form in vivo in the presence of regulatory GAPs.  相似文献   

10.
The beta-subunit of the insulin receptor from the muscle of the shrimp Penaeus japonicus exists as multiple subtypes with M(r) of 79,000, 77,000 and 75,000. Only the subunit of M(r) 79,000 is autophosphorylated after the addition of insulin. The autophosphorylation occurred specifically at Tyr residues, as demonstrated by the specific subsequent dephosphorylation by the phosphotyrosyl protein phosphatase from the human placenta. The detergent, Triton X-100, and the metal ion, Mn2+, caused a noticeable enhancement of the autophosphorylation of shrimp insulin receptors from the muscle. Okadaic acid activated the kinase activity of the insulin-stimulated insulin receptor, but not the basal activity of the insulin receptor without the addition of insulin. Further studies comparing the insulin binding of the shrimp insulin receptor in the regulation of kinase activity of the multiple beta-subunit subtypes from the shrimp muscle are under way.  相似文献   

11.
Unlike the alpha subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins, Ras-related GTP-binding proteins have hitherto been considered not to bind or become activated by tetrafluoroaluminate (AIF4-). However, the product of the proto-oncogene ras in its guanosine diphosphate (GDP)-bound form interacted with AIF4 - in the presence of stoichiometric amounts of either of the guanosine triphosphatase (GTPase)-activating proteins (GAPs) p120GAP and neurofibromin. Neither oncogenic Ras nor a GAP mutant without catalytic activity produced such a complex. Together with the finding that the Ras-binding domain of the protein kinase c-Raf, whose binding site on Ras overlaps that of the GAPs, did not induce formation of such a complex, this result suggests that GAP and neurofibromin stabilize the transition state of the GTPase reaction of Ras.  相似文献   

12.
Posttranslational modification of Rab proteins by geranylgeranyltransferase type II requires that they first bind to Rab escort protein (REP). Following prenylation, REP is postulated to accompany the modified GTPase to its specific target membrane. REP binds preferentially to Rab proteins that are in the GDP state, but the specific structural domains involved in this interaction have not been defined. In p21 Ras, the alpha2 helix of the Switch 2 domain undergoes a major conformational change upon GTP hydrolysis. Therefore, we hypothesized that the corresponding region in Rab1B might play a key role in the interaction with REP. Introduction of amino acid substitutions (I73N, Y78D, and A81D) into the putative alpha2 helix of Myc-tagged Rab1B prevented prenylation of the recombinant protein in cell-free assays, whereas mutations in the alpha3 and alpha4 helices did not. Additionally, upon transient expression in transfected HEK-293 cells, the Myc-Rab1B alpha2 helix mutants were not efficiently prenylated as determined by incorporation of [3H]mevalonate. Metabolic labeling studies using [32P]orthophosphate indicated that the poor prenylation of the Rab1B alpha2 helix mutants was not directly correlated with major disruptions in guanine nucleotide binding or intrinsic GTPase activity. Finally, gel filtration analysis of cytosolic fractions from 293 cells that were coexpressing T7 epitope-tagged REP with various Myc-Rab1B constructs revealed that mutations in the alpha2 helix of Rab1B prevented the association of nascent (i.e., nonprenylated) Rab1B with REP. These data indicate that the Switch 2 domain of Rab1B is a key structural determinant for REP interaction and that nucleotide-dependent conformational changes in this region are largely responsible for the selective interaction of REP with the GDP-bound form of the Rab substrate.  相似文献   

13.
Transient kinetic methods have been used to analyze the interaction between the Ras-binding domain (RBD) of c-Raf-1 and a complex of H-Ras and a GTP analogue. The results obtained show that the binding is a two-step process, with an initial rapid equilibrium step being followed by an isomerization reaction occurring at several hundred per second. The reversal of this step determines the rate constant for dissociation, which is on the order of 10 s-1. The lifetime of the complex is therefore on the order of 50-100 ms, which is much shorter than the lifetime of GTP at the active site of H-Ras as determined by the intrinsic GTPase reaction. This suggests that multiple interactions of a single activated Ras molecule and Raf can occur, the number being limited by the competing interaction with GAP. The GDP complex of H-Ras binds more than 2 orders of magnitude more weakly than the GTP-analogue complex, mainly due to a significant weakening of the initial binding equilibrium reaction in the GDP state, thereby avoiding even short-lived recruitment of Raf to the plasma membrane by the inactive Ras form.  相似文献   

14.
The bacterial signal recognition particle (SRP) is an RNA-protein complex. In Escherichia coli, the particle consists of a 114 nt RNA, a 4.5S RNA, and a 48 kDa GTP-binding protein, Ffh. GDP-GTP exchange on, and GTP hydrolysis by, Ffh are thought to regulate SRP function in membrane targeting of translating ribosomes. In the present paper, we report the equilibrium and kinetic constants of guanine nucleotide binding to Ffh in different functional complexes. The association and dissociation rate constants of GTP/GDP binding to Ffh were measured using a fluorescent analogue of GTP/GDP, mant-GTP/GDP. For both nucleotides, association and dissociation rate constants were about 10(6) M-1 s-1 and 10 s-1, respectively. The equilibrium constants of nonmodified GTP and GDP binding to Ffh alone and in SRP, and in the complex with the ribosomes were measured by competition with mant-GDP. In all cases, the same 1-2 microM affinity for GTP and GDP was observed. Binding of both GTP and GDP to Ffh was independent of Mg2+ ions. The data suggest that, at conditions in vivo, (i) there will be rapid spontaneous GDP-GTP exchange, and (ii) the GTP-bound form of Ffh, or of SRP, will be predominant.  相似文献   

15.
The GTP analog GTP gamma S potently inhibits nuclear envelope assembly in cell-free Xenopus egg extracts. GTP gamma S does not affect vesicle binding to chromatin but blocks vesicle fusion. Fusion inhibition by GTP gamma S is mediated by a soluble factor, initially named GSF (GTP gamma S-dependent soluble factor). We previously showed that vesicles pretreated with GTP gamma S plus recombinant mammalian ARF1 were inhibited for fusion, suggesting that "GSF activity" was due to the ARF (ADP-ribosylation factor) family of small GTP-binding proteins. To ask if any soluble proteins other than ARF also inhibited vesicle fusion in the pretreatment assay, we purified GSF activity from Xenopus egg cytosol. At all steps in the purification, fractions containing ARF, but no other fractions, showed GSF activity. The purified GSF was identified as Xenopus ARF by immunoblotting and peptide sequence analysis. Reverse phase HPLC and mass spectrometry revealed that GSF contained at least three distinct ARF proteins, all of which copurified through three chromatography steps. The most abundant isoform was identified as ARF1 (62% of the total GSF), because its experimentally determined mass of 20 791 Da matched within experimental error that predicted by the sequence of the Xenopus ARF1 cDNA, which is reported here. The second-most abundant isoform (25% of GSF activity) was identified as ARF3. We concluded that ARF is most likely the only soluble protein that inhibits nuclear vesicle fusion after pretreatment with GTP gamma S.  相似文献   

16.
Guanine nucleotide exchange factors (GEFs) activate Ras proteins by stimulating the exchange of GTP for GDP in a multistep mechanism which involves binary and ternary complexes between Ras, guanine nucleotide, and GEF. We present fluorescence measurements to define the kinetic constants that characterize the interactions between Ras, GEF, and nucleotides, similar to the characterization of the action of RCC1 on Ran [Klebe et al. (1995) Biochemistry 34, 12543-12552]. The dissociation constant for the binary complex between nucleotide-free Ras and the catalytic domain of mouse Cdc25, Cdc25(Mm285), was 4.6 nM, i.e., a 500-fold lower affinity than the Ras.GDP interaction. The affinities defining the ternary complex Ras. nucleotide.Cdc25(Mm285) are several orders of magnitude lower. The maximum acceleration by Cdc25(Mm285) of the GDP dissociation from Ras was more than 10(5)-fold. Kinetic measurements of the association of nucleotide to nucleotide-free Ras and to the binary complex Ras. Cdc25(Mm285) show that these reactions are practically identical: a fast binding step is followed by a reaction of the first order which becomes rate limiting at high nucleotide concentrations. The second reaction is thought to be a conformational change from a low- to a high-affinity nucleotide binding conformation in Ras. Taking into consideration all experimental data, the reverse isomerization reaction from a high- to a low-affinity binding conformation in the ternary complex Ras. GDP.Cdc25(Mm285) is postulated to be the rate-limiting step of the GEF-catalyzed exchange. Furthermore, we demonstrate that the disruption of the Mg2+-binding site is not the only factor in the mechanism of GEF-catalyzed nucleotide exchange on Ras.  相似文献   

17.
The crystal structure of intact elongation factor Tu (EF-Tu) from Escherichia coli in GDP-bound conformation has been determined using a combination of multiple isomorphous replacement (MIR) and multiwavelength anomalous diffraction (MAD) methods. The current atomic model has been refined to a crystallographic R factor of 20.3 % and free R-factor of 26.8 % in the resolution range of 10-2.05 A. The protein consists of three domains: domain 1 has an alpha/beta structure; while domain 2 and domain 3 are beta-barrel structures. Although the global fold of the current model is similar to those of published structures, the secondary structural assignment has been improved due to the high quality of the current model. The switch I region (residues 40-62) is well ordered in this structure. Comparison with the structure of EF-Tu in GDP-bound form from Thermus aquaticus shows that although the individual domain structures are similar in these two structures, the orientation of domains changes significantly. Interactions between domains 1 and 3 in our E. coli EF-Tu-GDP complex are quite different from those of EF-Tu with bound GTP from T. aquaticus, due to the domain rearrangement upon GTP binding. The binding sites of the Mg2+ and guanine nucleotide are revealed in detail. Two water molecules that co-ordinate the Mg2+ have been identified to be well conserved in the GDP and GTP-bound forms of EF-Tu structures, as well as in the structure of Ras p21 with bound GDP. Comparisons of the Mg2+ binding site with other guanine nucleotide binding proteins in GDP-bound forms show that the Mg2+ co-ordination patterns are well preserved among these structures.  相似文献   

18.
ADP-ribosylation factors (ARFs) are 20-kDa guanine nucleotide-binding proteins and are active in the GTP-bound state and inactive with GDP bound. ARF-GTP has a critical role in vesicular transport in several cellular compartments. Conversion of ARF-GDP to ARF-GTP is promoted by a guanine nucleotide-exchange protein (GEP). We earlier reported the isolation from bovine brain cytosol of a 700-kDa protein complex containing GEP activity that was inhibited by brefeldin A (BFA). Partial purification yielded an approximately 60-kDa BFA-insensitive GEP that enhanced binding of ARF1 and ARF3 to Golgi membranes. GEP has now been purified extensively from rat spleen cytosol in a BFA-insensitive, approximately 55-kDa form. It activated class I ARFs (ARFs 1 and 3) that were N-terminally myristoylated, but not nonmyristoylated ARFs from class-I, II, or III. GEP activity required MgCl2. In the presence of 0.6-0.8 mM MgCl2 and 1 mM EDTA, binding of guanosine 5'-[gamma[35S]thio]triphosphate ([35S]GTP gamma S) by ARF1 and ARF3 was equally high without and with GEP. At higher Mg2+ concentrations, binding without GEP was much lower; with 2-5 mM MgCl2, GEP-stimulated binding was maximal. The rate of GDP binding was much less than that of GTP gamma S with and without GEP. Phospholipids were necessary for GEP activity; phosphatidylinositol was more effective than phosphatidylserine, and phosphatidic acid was less so. Other phospholipids tested were ineffective. Maximal effects required approximately 200 microM phospholipid, with half-maximal activation at 15-20 microM. Release of bound [35S]GTP gamma S from ARF3 required the presence of both GEP and unlabeled GTP or GTP gamma S; GDP was much less effective. This characterization of the striking effects of Mg2+ concentration and specific phospholipids on the purified BFA-insensitive ARF GEP should facilitate experiments to define its function in vesicular transport.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号