首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a plasma electrolytic oxidation process was applied to AZ91 and AM50 magnesium alloys and commercially pure magnesium to produce a protective surface layer. The plasma electrolytic oxidation process was carried out in an alkaline phosphate solution with a DC power supply, using relatively high current densities and short treatment times. The influence of some important process parameters such as current density, treatment time and voltage was studied. The layers were characterised by scansion electron microscopy, X-ray diffraction and X-ray photoelectron spectrometry, in order to investigate the effect of the process parameters on the microstructure and chemical composition. The corrosion resistance properties of the obtained layers were investigated by potentiodynamic anodic polarization and electrochemical impedance spectroscopy tests. The current density, applied during the treatment, influenced the morphology and the thickness of the coatings, and, consequently, the corrosion resistance. The corrosion tests evidenced that the layers obtained with plasma electrolytic process provided a good corrosion protection to the magnesium and magnesium alloys.  相似文献   

2.
The formation of phosphate coatings by cathodic electrochemical treatment using graphite and steel anodes and evaluation of their corrosion resistance is addressed in this paper. The type of anode used, graphite/steel, has an obvious influence on the composition of the coating, resulting in zinc–zinc phosphate composite coating with graphite anode and zinc–iron alloy–zinc phosphate–zinc–iron phosphate composite coating with steel anode. The corrosion resistance of the coating is found to be a function of the composition of the coating. The deposition of zinc/zinc–iron alloy along with the zinc phosphate/zinc and zinc–iron phosphate using graphite/steel anodes has caused a cathodic shift in the Ecorr compared to uncoated mild steel substrates. The icorr values of these coatings is very high. EIS studies reveal that zinc/zinc–iron alloy dissolution is the predominant reaction during the initial stages of immersion. Subsequently, the formation of zinc and iron corrosion products imparts resistance to the charge transfer process and increases the corrosion resistance with increase in immersion time. The corrosion products formed might consist of oxides and hydroxychlorides of zinc and iron. The study suggests that cathodic electrochemical treatment could be effectively utilized to impart the desirable characteristics of the coating by choosing appropriate anode materials, bath composition and operating conditions.  相似文献   

3.
测试了磷酸盐转化膜和稀土促进的转化膜在不同pH溶液中的极化曲线、时间-电位曲线和电化学阻抗谱(EIS),对磷酸盐转化膜的耐蚀性能进行了研究。电化学测试表明:稀土磷酸盐处理后的铝合金试样的阳极极化电流下降;交流阻抗测试结果显示:由稀土促进生成的磷酸盐化学转化膜具有较大的极化电阻,二者都说明经稀土促进的转化膜的耐腐蚀性能得到了加强。  相似文献   

4.
铝合金表面电解沉积稀土转化膜工艺研究   总被引:12,自引:4,他引:8  
研究了一种通过电解沉积方法在防锈铝LF21表面上生成铈盐转化膜的工艺,应用正交实验研究了有关因素对成膜过程的影响并获得了最佳的技术参数用极化曲线、交流阻抗和中性盐雾试验等方法测试了该工艺形成膜层的耐蚀性能及其组成一结果表明:经过电解沉积稀土转化膜处理后,防锈铝的阳极腐蚀过程受到了阻滞,自然腐蚀电位负移;与经过化学转化膜处理后相比,其耐蚀性能有显著提高,可通过400h的中性盐雾实验,亲水性能亦有明显提高。  相似文献   

5.
为了获得厚度适中、耐蚀性能好的热浸镀锌层,在锌浴中添加微量的Ti和Ce,分别在Zn-0.04%Ti、Zn-0.02%Ce和Zn-0.04%Ti-0.02%Ce镀浴中制得热浸锌合金镀层.采用金相显微分析以及电化学阻抗谱、电化学极化测试、中性盐雾试验,研究了Ti和Ce对镀层组织和耐蚀性能的影响.结果表明:在锌浴中添加0.0...  相似文献   

6.
Current accelerated testing of aircraft coating systems for corrosion protection relies heavily on salt spray methods. Electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and electrochemical noise methods (ENM) provide insight into the global properties of a coating system, and both techniques are being used on a limited basis. However, there is a need to investigate corrosion events with greater spatial resolution under coatings at the metal/coating interface. Such corrosion activity may be related to coating defects and variations in the surface chemistry of the underlying metal.

The scanning vibrating electrode technique (SVET) has been developed to allow high spatial resolution investigation of localized corrosion activity that may be associated with coating defects or galvanic coupled regions of the metal surface. The SVET offers high resolution in current measurements of the order of 0.5 μA/cm2 and is able to detect in-situ initiation and progress of corrosion activity under a protective coating. Using the SVET, minute variations in d.c. current associated with localized corrosion activity are detected and used to map both anodic and cathodic corrosion activities in a localized area. The difference in initial corrosion activity under various coatings can be correlated to the performance life of the coatings. The application of SVET to aircraft coatings and corrosion is reported to demonstrate the utility of this important new electrochemical tool.

In the current study, the SVET was used to discriminate the corrosion protection performance of selected sol–gel based coating systems. Sol–gel based surface treatments are being developed as part of an environmentally compliant coating system alternative to the currently used chromate-based systems. The SVET results are compared with data obtained from chromium inhibition coating systems. The SVET analyses are compared with electrochemical impedance measurements. The comparison of such data will provide the basis to adopt SVET measurements as an early performance discriminator for newly developed coating systems.  相似文献   


7.
Electrochemical treatment and galvanic coupling are some of the possible modes of acceleration of low temperature phosphating process. The cathodic and anodic treatments during phosphating influence the deposition mechanism, characteristic properties and the corrosion resistance of the resultant coatings in a different way. The present paper aims to compare these aspects and to identify the possible applications of phosphate coatings obtained by these treatments.  相似文献   

8.
One of the most important factors in corrosion prevention by protective coatings is the coating adhesion loss under environmental influence. Thus, adhesion strength is often used when characterizing protective properties of organic coatings on a metal substrate. In order to improve the adhesion of organic coating the metal substrate is often pretreated in some way. In this work, the adhesion of polyester coatings on differently pretreated aluminium surface (by anodizing, with and without sealing, by phosphating and by silane film deposition) was examined. The dry and wet adhesion of polyester coatings were measured by a direct pull-off standardized procedure, as well as indirectly by NMP test. It was shown that under dry test conditions all polyester coatings showed very good adhesion, but that aluminium surface pretreated by silane film showed superior adhesion. The overall increase of wet adhesion for polyester coating on aluminium pretreated by silane film was maintained throughout the whole investigated time period. The different trends in the change of adhesion of polyester coatings were observed for different aluminium pretreatments during exposure to the corrosive agent (3% NaCl solution). The highest adhesion reduction was obtained for polyester coating on aluminium pretreated with phosphate coating. The corrosion stability of polyester coated aluminium was investigated by electrochemical impedance spectroscopy in 3% NaCl solution. The results confirmed good protective properties of polyester coating on aluminium pretreated with silane film, i.e. greater values of pore resistance and smaller values of coating capacitance were obtained in respect to other protective systems, whereas charge-transfer resistance and double-layer capacitance were not measurable during 2 months of exposure to a corrosive agent.  相似文献   

9.
采用化学合成法制备磷酸铝粘结剂,以球形铝粉为骨料,添加不同含量的硅溶胶,制备磷酸铝涂料,再经过热处理制备磷酸铝涂层。通过X射线衍射分析(XRD)表征粘结剂和涂层物相结构,采用扫描电子显微镜(SEM)表征涂层形貌,通过电化学测试和浸泡试验对比研究涂层腐蚀行为。分析结果表明:在磷酸铝涂层中添加适量硅溶胶可以改善涂层表面质量和耐腐蚀性能,从而使涂层腐蚀电位升高,腐蚀电流降低,阻抗值增大。添加10%硅溶胶的涂层质量最佳,耐腐蚀性能最优。  相似文献   

10.
The influence of steel surface pretreatment with different types of iron–phosphate coatings on the corrosion stability and adhesion characteristics of polyester coatings on steel was investigated. The phosphate coating was chemically deposited either from the simple novel plating bath, or with the addition of NaNO2, as an accelerator in the plating bath. The morphology of phosphate coatings was investigated using atomic force microscopy (AFM). The corrosion stability of polyester coatings on steel pretreated by iron–phosphate coatings was investigated by electrochemical impedance spectroscopy (EIS) in 3% NaCl solution, while “dry” and “wet” adhesion were measured by a direct pull-off standardized procedure. It was shown that greater values of pore resistance, Rp, and smaller values of coating capacitance of polyester coating, Cc, on steel pretreated with iron–phosphate coating were obtained, as compared to polyester coating on steel phosphated with accelerator, and on the bare steel. The surface roughness of phosphate coating deposited on steel from the bath without accelerator is favorable in forming stronger bonds with polyester coating. Namely, the dry and wet adhesion measurements are in accordance with EIS measurements in 3% NaCl solution, i.e. lower adhesion values were obtained for polyester coating on steel phosphated with accelerator and on the bare steel, while the iron–phosphate pretreatment from the novel bath enhanced the adhesion of polyester coating on steel.  相似文献   

11.
PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.  相似文献   

12.
脉冲参数对镍镀层在NaCl溶液中耐蚀性的影响   总被引:1,自引:1,他引:0  
采用扫描电镜观察镀层腐蚀前后的微观表面形貌,其腐蚀为小孔腐蚀,并分析镍镀层在NaCl溶液中的腐蚀机理.利用浸泡腐蚀试验及阳极极化曲线测试镍镀层的耐蚀性.利用阳极极化曲线测试结果作为正交试验指标,着重分析脉冲参数及pH值对镀层耐蚀性的影响规律.脉冲频率越大,脉冲平均电流密度在6 A/cm2左右,pH值为3.8时,镀层耐蚀性能最好.  相似文献   

13.
The combination of chemical and mechanical properties of diamond-like carbon (DLC) films opens the possibilities for its use in electrochemical applications. DLC electrochemical corrosion behavior is heavily dependent on deposition techniques and precursor gas. Fluorinated-DLC combines the superlative properties of diamond and teflon and becomes one of the most suitable coating for tribological applications. F-DLC was grown over 316L stainless steel using plasma enhanced chemical vapor deposition by varying the ratio of carbon tetrafluoride and methane. The influence of fluorine content on deposition rate, composition, bonding structure, surface energy, hardness, stress, and surface roughness was investigated. Emphasis was placed on the investigation of F-DLC electrochemical corrosion behavior, which was tested by potentiodynamic method. As F content increased, F-DLC films presented lower stress, hardness values and surface free energy. In addition, Raman G-band peak position shifted to higher frequency. The corrosion potential becomes more negative and the anodic and cathodic current densities decreased with the increase of F content, as compared to the pure DLC and the substrates. These results were confirmed by Nyquist plot, which shows a stronger ohmic behavior for F-DLC and Bode plots with different corrosion behaviors. The electrochemical analysis indicated F-DLC films present superior impedance, polarization resistance and breakdown potential as compared to the pure DLC, which indicate they are promising corrosion protective coating in aggressive solutions.  相似文献   

14.
试验了在高碳钢丝表面上热浸镀Zn-5%Al-RE合金层。通过湿热试验、晶间腐蚀试验、盐雾腐蚀试验,研究了该合金镀层的耐蚀性能,并与镀锌钢丝的耐蚀性能进行了对比。在水蒸汽的晶间腐蚀试验表明,合金镀层还略逊于锌镀层,但是在采用模拟海水的湿热试验以及盐雾腐蚀试验中,合金热浸镀层的耐蚀性能明显优于普通锌镀层,阳极极化曲线表明,合金层的致钝电流密度小,致钝电位较低,且稳定钝化区较宽,这可能是合金热浸镀层在海水中具有较好耐蚀性能的主要原因。  相似文献   

15.
In this article, the effects of two inorganic corrosion inhibitors, permanganate and phosphate anions, on morphology, composition, thickness, and corrosion resistance of the anodic film formed on 2024 aluminum alloy in sulfuric acid were investigated. Surface morphology of the oxide films were studied by field emission scanning electron microscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization tests were conducted to assess the corrosion resistance of the coatings. These analyses showed that the presence of the mentioned inhibitors changed the coating morphology, especially in the case of phosphate ions. Corrosion results indicated that using inhibitors during the anodizing process increased the corrosion resistance of the anodized samples. The increases were approximately 81% and 97% for 0.05 M of permanganate and phosphate ions, respectively, compared with the anodized coatings in the absence of additives. An increase in the inhibitor concentration results in better corrosion resistance of the aluminum anodic layer.  相似文献   

16.
The chemical composition and phase structure of Zn–Ni alloys obtained by electrodeposition under various conditions were investigated. The influence of the deposition solution and deposition current density on the composition, phase structure, current efficiency and corrosion properties of Zn–Ni alloys were examined. It was shown that the chemical composition and phase structure affect the anticorrosive properties of Zn–Ni alloys. A Zn–Ni alloy electrodeposited from a chloride solution at 20 mA cm–2 exhibited the best corrosion properties, so this alloy was chosen for further examination. Epoxy coatings were formed by cathodic electrodeposition of an epoxy resin on steel and steel modified with a Zn–Ni alloy. From the time dependence of the pore resistance, coating capacitance and relative permittivity of the epoxy coating, the diffusion coefficient of water through the epoxy coating, D(H2O), and its thermal stability, it was shown that the Zn–Ni sublayer significantly affects the electrochemical and transport properties, as well as the thermal stability of epoxy coatings. On the basis of the experimental results it can be concluded that modification of a steel surface by a Zn–Ni alloy improves the corrosion protection of epoxy coatings.  相似文献   

17.
碱性化学沉积镍-磷合金镀层耐蚀性的研究   总被引:1,自引:0,他引:1  
采用正交实验对柠檬酸钠体系碱性镀镍液的组成及工艺条件进行优化,获得具有良好耐蚀性的镀层,并分析各组分的质量浓度对饺层耐蚀性能的影响。采用SEM观察镀层的表面微观形貌,利用电化学方法(Tafel曲线)和差重法评价镀层的耐蚀性能。结果表明:最佳工艺得到的镀层均匀、细致,镀液中NaH2PO2的质量浓度对镀层的耐蚀性能影响较大。  相似文献   

18.
The adhesion of electrodeposition (ED) paint on steel sheets for automobiles is highly influenced by the properties of the zinc phosphate coating which is used to improve its corrosion resistance. In the present study, a steel surface was pretreated with two types of zinc phosphate formulations followed by ED painting. The surface morphology, crystal plane, and porosity properties of phosphate coating on steel samples were studied by scanning electron microscope, X-ray diffraction, and electron probe microanalyzer, respectively. The corrosion resistance of painted samples was evaluated by an accelerated corrosion test as well as by electrochemical techniques like cathodic disbonding and AC?CDC?CAC tests. The phosphate coating enriched with a phosphophyllite structure showed small globular crystals with less porosity, whereas a hopeite structure showed coarse crystals with high porosity and comparatively thicker coating. The maximum corrosion resistance was observed in the painted sample, where the phosphate coating comprised a phosphophyllite structure. On the other hand, the painted samples phosphated with a predominantly hopeite structure showed inferior corrosion resistance performance. The unphosphated sample showed severe degradation in paint adhesion and corrosion resistance, which substantiates the importance of phosphate pretreatment.  相似文献   

19.
This project aims at improving the electrochemical performance of trivalent-chrome coating through urea and thiourea addition. The electrochemical behaviors of coatings formed with different concentrations of urea and thiourea were investigated in 3.5 wt.% NaCl solution at 25 °C, using potentiodynamic polarization curves and EIS. The corrosion resistance of coatings is improved greatly by adding a small amount of inhibitors, whereas the excessive addition deteriorates the corrosion resistance. Thiourea addition presents better effect than urea. To explain the EIS results of the coatings, a simple equivalent circuit was designed. The EIS parameters were obtained by fitting the EIS plots. The results of the polarization curves and EIS show that the inhibitor-containing coatings present better corrosion resistance than the coating without inhibitor. The morphology and composition and valence state of the conversion coatings were examined by SEM and EDS and XPS, respectively. The results indicated that the trivalent chromium coating was developed on Al 6063 alloy, urea and thiourea inhibitors were also deposited on the substrates, respectively. A noticeable chemical shift was also observed.  相似文献   

20.
Chlorobutyl coatings are industrially applied on metallic inner walls of HCl storage tanks, in order to protect steel against corrosion. Rubber coating constitutes an efficient barrier against HCl penetration up to metallic surface; yet, traces of monochlorobenzene (MCB) into HCl solutions can locally damage the coating and induce both acid infiltration and rapid corrosion of steel under the coating. Acoustic emission (AE) technique, due to its non-intrusive feature and its sensitivity, is a potential technique for the detection of polymer coating damage as well as metallic corrosion under the coating. In that context, this technique was coupled and compared to electrochemical measurements at least for metal damage evaluation. AE signals produced by corrosion of bare metal in HCl solution were first characterized, and then AE and electrochemical results obtained during metal and/or coating damage were compared, in the case of physical or chemical deteriorations of the coating, in an HCl solution containing traces of monochlorobenzene. In case of physical coating damaging, AE and polarisation resistance measurements are in good correlation as soon as metallic corrosion starts. When polymer coating suffers a solvent impregnation, previously to HCl solution contact, acoustic activity increases as soon as corrosion under the coating occurs, whereas polarisation resistance measurements do not allow detecting corrosion of steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号