首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize glutamate/aspartate uptake activity in various cellular and subcellular elements in the striatum, rat striatal slices were exposed to 10 and 50 mu M exogenous (D)-aspartate. After fixation with glutaraldehyde/formaldehyde the distribution of (D)-aspartate was analysed by postembedding immunocytochemistry and the ultrastructural distribution was compared with the distributions of endogenous glutamate and GABA. Light microscopically, (D)-aspartate-like immunoreactivity was localized in conspicuous dots along very weakly labelled dendritic profiles and neuron cell bodies. At the electron microscope level gold particles signalling (D)-aspartate occurred at highest density in nerve terminals making asymmetrical contacts with postsynaptic spines (i.e. resembling synapses of cortical afferents). Astrocytic processes also contained gold particles, but at a lower density than nerve endings. In contrast, dendritic spines were only weakly (D)-aspartate-positive. The difference in labelling at 10 and 50 mu M (D)-aspartate was consistent with 'high-affinity' uptake. Neighbouring sections processed with other antibodies showed that the D-aspartate labelling. Occurred in nerve terminals strongly immunoreactive for glutamate, rather than in terminals very weakly glutamate-immunopositive or in nerve endings immunoreactive for GABA. Glutamate labelling of perfusion-fixed striatum confirmed that terminals forming asymmetrical synaptic contacts with spines were enriched with gold particles, suggesting that these terminals use glutamate as a transmitter. This study demonstrates that high-affinity uptake sites for excitatory amino acids in the striatum are most strongly expressed on presumed glutamatergic nerve terminals and on astrocytes.  相似文献   

2.
Perturbation of astrocyte functions by HIV-1 infection may contribute to the pathogenesis of AIDS dementia complex (ADC). The present study investigated the possibility that astroglial transport of glutamate and aspartate, the major excitatory amino acids (EAAs) in the mammalian central nervous system (CNS), is altered by HIV-1 infection. Human U251 glioma cells were infected with the brain isolate SF162 of HIV-1. HIV-1 persisted in glial cells over several months. This nonproductive infection of glial cells was characterized by persistent expression of Nef over the time of the infection, and the transient presence of structural viral proteins, including the viral transmembrane glycoprotein gp41, which was detected during the initial 2 weeks following HIV-1 infection. The presence of gp41 in acutely HIV-1-infected glial cells coincided with a 36% decrease in D-[3H]aspartate uptake, owing to a reduction in the maximal transport capacity (vmax) for D-aspartate. The expression of typical astrocytic glutamate transporters EAAT1 and EAAT2 in U251 glioma cells was not altered by HIV-1 infection. To determine whether viral protein gp120, gp41, or Nef was involved in the impairment of EAA transport in acutely HIV-1-infected glial cells, effects of lentiviral lytic peptide type 1 (LLP-1) (corresponding to the carboxy terminus of gp41), recombinant SF2 gp120, and recombinant LAI Nef on D-[3H]aspartate uptake and the release of glutamate in glial cells were investigated. Only LLP-1 reduced D-[3H]aspartate uptake and facilitated the release of glutamate from glial cells in a concentration-dependent manner. These results suggest that the carboxy terminus of gp41 impairs EAA transport in glial cells, which may contribute to excitotoxic damage to neurons in HIV-1 infection of the CNS.  相似文献   

3.
Previous studies have shown that complete blockade of metabolism in embryonic chick retina causes a time-dependent increase in the release of glutamate into the extracellular space. The present study examined the cellular source of this glutamate, i.e., neuronal and/or glial. Pure cultures of retinal neurons or glia were labeled for 10 min at 37 degrees C with [3H]acetate. Retinal glia, but not retinal neurons, were found to selectively and preferentially metabolize acetate, thus producing 3H-labeled amino acids in the glial compartment. This finding provides direct evidence to substantiate findings from several other laboratories that have indirectly determined the preferential metabolism of acetate by glia by using mixed neuronal/glial populations. To study the cellular source of glutamate released during total metabolic blockade, whole retina were prelabeled with [3H]acetate plus [U-14C]glucose (to label the neuronal compartment). Total metabolic blockade was instituted with a combination of iodoacetate (IOA) plus KCN, and the release of glutamate into the medium was followed at 5, 15, and 30 min. During total energy blockade, net extracellular glutamate was not elevated at 5 min [0.17 +/- 0.02 vs. 0.12 +/- 0.01 microM for treated vs. control retina (means +/- SEM), respectively], but was increased significantly at 15 (1.2 +/- 0.26 microM) and 30 min (2.6 +/- 0.22 microM). Total [3H]glutamate in the medium during IOA/KCN treatment was unchanged at 5 min, but was increased 1.5- and threefold above basal levels at 15 and 30 min, respectively. During the time when extracellular glutamate increased, the specific activity of [3H]glutamate remained fairly constant, 731 +/- 134 and 517 +/- 82 dpm/nmol (means +/- SEM) at 15 and 30 min, respectively. In contrast, 14C-labeled glutamate in the medium did not increase during IOA/KCN treatment and paralleled basal levels. Thus, the specific activity of 14C-labeled extracellular glutamate decreased from 309 +/- 87 dpm/nmol at 15 min to 42 +/- 8 dpm/nmol at 30 min. Prior loading of the tissue with 0.5 mM trans-pyrrolidine-2,4-dicarboxylate (t-PDC), a glutamate transport inhibitor, blocked 57% of the glutamate released at 30 min of IOA/KCN exposure, suggesting that reversal of an Na+-dependent glutamate transporter was a key contributor to the appearance of extracellular glutamate during energy deprivation. The increase in extracellular [3H]glutamate, constancy of the specific activity of extracellular [3H]glutamate, decrease in the specific activity of extracellular [14C]glutamate, and attenuation of release by prior loading with t-PDC indicate that glial pools of glutamate released via reversal of the transporter contribute significantly to the rise in extracellular glutamate after metabolic inhibition in this preparation.  相似文献   

4.
To elucidate the role of aspartate as a signal molecule in the brain, its localization and those of related amino acids were examined by light and electron microscopic quantitative immunocytochemistry using antibodies specifically recognizing the aldehyde-fixed amino acids. Rat hippocampal slices were incubated at physiological and depolarizing [K+] before glutaraldehyde fixation. At normal [K+], aspartate-like and glutamate-like immunoreactivities were colocalized in nerve terminals forming asymmetrical synapses on spines in stratum radiatum of CA1 and the inner molecular layer of fascia dentata (i.e., excitatory afferents from CA3 and hilus, respectively). During K+ depolarization there was a loss of aspartate and glutamate from these terminals. Simultaneously the immunoreactivities strongly increased in glial cells. These changes were Ca2+-dependent and tetanus toxin-sensitive and did not comprise taurine-like immunoreactivity. Adding glutamine at CSF concentration prevented the loss of aspartate and glutamate and revealed an enhancement of aspartate in the terminals at moderate depolarization. In hippocampi from animals perfused with glutaraldehyde during insulin-induced hypoglycemia (to combine a strong aspartate signal with good ultrastructure) aspartate was colocalized with glutamate in excitatory terminals in stratum radiatum of CA1. The synaptic vesicle-to-cytoplasmic matrix ratios of immunogold particle density were similar for aspartate and glutamate, significantly higher than those observed for glutamine or taurine. Similar results were obtained in normoglycemic animals, although the nerve terminal contents of aspartate were lower. The results indicate that aspartate can be concentrated in synaptic vesicles and subject to sustained exocytotic release from the same nerve endings that contain and release glutamate.  相似文献   

5.
Glutamate transport across the plasma membrane of neurons and glia is powered by the transmembrane electrochemical gradients for sodium, potassium, and pH, but there is controversy over the number of Na+ cotransported with glutamate. The stoichiometry of glutamate transporters is important because it determines a lower limit to the extracellular glutamate concentration, [glu]o, in both normal and pathological conditions. We used whole-cell clamping to study the stoichiometry of the glial transporter GLT-1, the most abundant glutamate transporter in the brain, expressed under control of the Tet-On system in a Chinese hamster ovary (CHO) cell line selected for low endogenous glutamate transport. After the induction of GLT-1 expression with doxycycline, glutamate evoked a Na+-dependent inward current with the voltage dependence and pharmacology of GLT-1 and acidified the cell cytoplasm. Raising [K+]o around cells clamped with electrodes containing sodium and glutamate evoked an outward reversed uptake current. These responses were reduced by the specific GLT-1 blocker dihydrokainate (DHK). DHK evoked an outward current with NO3-, but not with Cl-, as the main intracellular anion, suggesting that the anion conductance of the transporter is active even without external glutamate but generates little current in the absence of highly permeable anions like NO3-. Measuring the reversal potential of the transporter current in various ionic conditions suggested that the transport of one glutamate anion is coupled to the cotransport of three Na+ and one H+ and to the countertransport of one K+. This suggests that in ischemia, when [K+]o rises to 60 mM, the reversal of glutamate transporters will raise [glu]o to >50 microM.  相似文献   

6.
Spontaneous [3H]dopamine ([3H]DA) overflow was measured from striatal slices in the presence of different glutamate (Glu) receptor agonists such as N-methyl-D-aspartate (NMDA), kainate (KA) and quisqualate (QA) and their corresponding antagonists, Dizocilpine maleate (MK-801), D-gamma-glutamyl-aminomethanesulfonic acid (GAMS) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively. [3H]DA uptake and release in the presence of L-Arginine (L-Arg) and NG-nitro-arginine (L-N-Arg), an inhibitor of nitric oxide (NO) synthesis were also evaluated. L-N-Arg alone or combined with L-Arg significantly reduced [3H]DA uptake at 10 and 100 microM from 33% to 44% from striatal slices. Whereas, in brain synaptosomal fractions L-Arg induced a biphasic effect on that [3H]DA uptake in a dose dependent manner, and L-N-Arg showed an absolute inhibition in 80-90% of this [3H]DA uptake at 1-500 microM. The amino acids, lysine, valine and histidine (100 microM) had a little effect inhibitory on [3H]DA uptake from synaptosomal fractions. Glu agonists, NMDA (10 microM) and KA (10 microM) importantly increased the spontaneous [3H]DA overflow, which was blocked by MK-801 (10 microM) and GAMS (10 microM), respectively. QA had no effect on [3H]DA release. L-Arg (10-200 microM) potentiated the spontaneous [3H]DA overflow in a dose dependent fashion from striatal slices, being reverted by 10 microM L-N-Arg alone or in combination with all other compounds; whereas, lysine, histidine and valine did not modify that spontaneous [3H]DA overflow. Results support the hypothesis related to the participation of NO on DA transport possibly synthesized at the dopaminergic (DAergic) terminals in the striatum; also that L-Arg concentration may determine alternative mechanisms to regulate the DAergic activity at the striatum.  相似文献   

7.
The deleterious effect of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic neurons of the substantia nigra is well established. In addition, increased glutamatergic drive to basal ganglia output nuclei is considered a likely contributor to the pathogenesis of Parkinson's disease. One possibility for the increased excitatory tone may be related to an impairment in glutamate uptake. As astrocytes possess efficient transport mechanisms for both MPTP and glutamate, we have examined the effect of this agent on D-aspartate uptake into these cells. Treatment of cultures with 50 microM MPTP for 24 h decreased uptake by 39%. Kinetic analysis revealed that this effect was due to a 35% decrease in Vmax with no change in the Km. Treatment with deprenyl, a monoamine oxidase B inhibitor, produced a complete reversal of MPTP-induced uptake inhibition, but was ineffective following exposure of cells to the MPTP metabolite, 1-methyl-4-phenylpyridinium (MPP+). Removal of MPTP from cultures resulted in a complete restoration of glutamate uptake after 24 h. These results show that MPTP reversibly compromises glutamate uptake in cultured astrocytes, which is dependent on the conversion of MPTP to MPP+. Such findings suggest that the glutamate transporter in astrocytes plays an important role in MPTP-induced neurotoxicity and possibly in parkinsonism.  相似文献   

8.
The excitatory effect of presynaptically released glutamate is tightly regulated and terminated by high affinity sodium-dependent glutamate transporters. The regulation of the glial glutamate transporter GLT-1 is potentially important in synaptic modulation. Using astroglial cultures prepared from the rat cerebral cortex, we found that the delta-opioid receptor agonist [D-pen2,D-pen5]-enkephalin decreases and glutamate increases the expression of the GLT-1 transporter mRNA. Corresponding changes in the uptake kinetics were found after incubation for 48 h with the respective agonists when glial glutamate uptake was measured in primary astroglial cultures. The data suggest that long-term receptor activation induces alterations in glial glutamate uptake properties.  相似文献   

9.
Crude mitochondrial P2 fractions from bovine hypothalamus and substantia nigra, slices from rabbit spinal cord and mesencephalon and glial fractions from rabbit brain were incubated with [3H]-substance P and the uptake was measured and compared with those for 5-HT and GABA. Substance P was to some extent taken up into the fractions but this uptake was neither temperature nor time dependent and the pellet/medium ratios were less than 1. Similar results were obtained in high potassium treated slices from rabbit mesencephalon. The rate of uptake for [3H]-substance P increased linearly in proportion to the medium concentration, suggesting a non-saturable binding. These results, together with our previous observations provide strong evidence that nerve terminals and glial cells lack a temperature sensitive, active uptake system capable of terminating transmitter action of substance P at the synapse.  相似文献   

10.
The hypothesis involving glutamate in the neuropathology of schizophrenia has attracted great interest. Several studies report dysfunctions in glutamatergic systems, including alterations in kainate and N-methyl-D-aspartate (NMDA) receptors in various areas, as well as changes in the number of glutamate uptake sites. We have studied this further using [3H]D-aspartate binding to glutamate uptake sites as a measure of the integrity of presynaptic glutamate systems in several areas (caudate nucleus, putamen, nucleus accumbens, frontal cortex and temporal cortex) of brain tissue taken at autopsy from schizophrenic patients and controls. A significant decrease in the number of glutamate uptake sites was apparent in caudate nucleus, putamen and nucleus accumbens in the schizophrenia group, indicating an impaired glutamatergic innervation of these subcortical regions. However, no significant changes were found in the two cortical regions studied.  相似文献   

11.
L-DOPA kills dopamine neurones in culture but is the most effective drug for the treatment of Parkinson's disease, where it exhibits no clear toxicity. While glial cells surround and protect neurones in vivo, neurones are usually cultured in vitro in the absence of glia. We treated fetal midbrain rat neurones with L-DOPA, mesencephalic glia conditioned medium (CM) and L-DOPA + CM. L-DOPA reduced the number of tyrosine hydroxylase-positive (TH+) cells and [3H]DA uptake, and increased quinone levels. L-DOPA + CM restored [3H]DA uptake and quinone levels to normal, and increased the number of TH+ cells and terminals to 170% of control. CM greatly increased the number of TH+ cells and [3H]DA uptake. Mesencephalic glia therefore produced soluble factors which are neurotrophic for dopamine neurones, and which protect these neurones from the toxic effects of L-DOPA.  相似文献   

12.
We studied the postnatal development of the release of acetylcholine (ACh) and of presynaptic, release-inhibiting muscarinic autoreceptors in the rat hippocampus. To this end, hippocampal slices (350 microns thick) from rats of various postnatal ages (postnatal day 3 [P3] to P16) were preincubated with [3H]choline and stimulated twice (S1, S2: 360 pulses, 2 ms, 3 Hz, 60 mA) during superfusion with physiological buffer containing hemicholinium-3 (10 microM). In parallel, the activities of hemicholinium-sensitive high-affinity choline uptake (HACU, in synaptosomes) and of choline acetyltransferase (ChAT, in crude homogenates) were determined as markers for the cholinergic ingrowth. In hippocampal slices preincubated with [3H]choline, the electrically evoked overflow of 3H at S1 increased from 0.11 (P3) to 0.81% of tissue 3H (P16), the latter value being still much lower than that of hippocampal slices from adult rats (2.89% of tissue 3H). Already at P3 the evoked overflow of 3H was Ca(2+)-dependent and sensitive to tetrodotoxin, indicating an action potential-evoked exocytotic mechanism of ACh release. The muscarinic agonist oxotremorine (1 microM) significantly inhibited the evoked ACh release in hippocampal slices with increasing effectivity from P4 to P16; no significant effect was detectable at P3. The ACh esterase inhibitor physostigmine and the muscarinic antagonist atropine (1 microM, each) exhibited significant inhibitory and facilitatory effects, respectively, only at P15-16. The specific activities of both hippocampal HACU (pmoles/mg protein/min) and ChAT (nmoles/mg protein/min) continuously increased from P3 to P16. It is concluded (1) that cholinergic nerve terminals arriving at the hippocampal formation during postnatal ingrowth are already endowed with the apparatus for action potential-induced, Ca(2+)-sensitive (exocytotic) ACh release; (2) that, in contrast, the expression of presynaptic muscarinic autoreceptors on these cholinergic axon terminals is delayed; and (3) that autoinhibition due to endogenous ACh develops even later, probably when the density of presynaptic terminals in the hippocampus and hence, the concentration of released ACh has reached a suprathreshold value.  相似文献   

13.
As a first step in understanding how the supply of the neurotransmitter histamine is maintained in a photoreceptor, we followed the uptake and metabolism of the immediate precursor of histamine, histidine. [3H]Histidine taken up into photoreceptors and glia was detected using autoradiography, and synthesis of [3H]histamine from [3H]histidine was assayed with thin-layer chromatography. Photoreceptors from barnacles were pulsed (15 min) with [3H]histidine (0.2-200 microM), then maintained in normal saline for up to 24 hr. Autoradiography showed that photoreceptor somata, axons, and presynaptic arbors were labeled, but only weakly, like (nonhistaminergic) ganglion cells. Label instead was concentrated over surrounding glia. Stimulating preparations with light did not increase photoreceptor labeling. Grain counts from photoreceptor axons showed uptake of [3H]histidine into these neurons by a Na+-dependent mechanism with a Km of approximately 50 microM. Over 24 hr only 1% of the [3H]histidine taken up by preparations was converted to [3H]histamine either in the dark or in the light. Injections of [3H]histidine directly into photoreceptors established that synthesis takes place within the photoreceptors and confirmed that stimulation with light did not measurably affect the rate of conversion of [3H]histidine to [3H]histamine. These results suggest that de novo synthesis of transmitter is unlikely to be as important as its reuptake in maintaining neurotransmitter supply in these photoreceptor terminals. In support of this conclusion, photoreceptors accumulated more label when transmitter release was stimulated with high K+ and histamine uptake was antagonized with chlorpromazine.  相似文献   

14.
L-2-Chloropropionic acid (L-CPA), when orally administered at single high dose to rats produces a selective lesion in the cerebellum involving destruction of a high proportion of granule cells by a mechanism which involves N-methyl-D-aspartate (NMDA) receptors. Receptor binding studies demonstrated that L-CPA a had low affinity at the glutamate and glycine binding sites at NMDA receptors (530-660 microM), respectively, whereas L-CPA did not displace [3H]AMPA, [3H]NBQX or [3H]kainate from AMPA or kainate receptors. Whole cell-patch clamp experiments using cultured granule cells failed to demonstrate changes in membrane potential of cultured granule cells when either L-CPA (0.25 or 1 microM) was added alone to the bathing solution, or in combination with glycine (10 microM). Furthermore L-CPA did not alter the magnitude of the inward current produced by application of NMDA (100 microM)) to cultured granule cells, in the presence of glycine, as measured by patch clamp techniques. Experiments were also performed to discover whether L-CPA may alter the release of the excitatory amino acids from the cerebellum, which may then indirectly alter activity at glutamate receptors, leading to neuronal cell death. L-CPA (2 mM) did not affect either basal or stimulated (electrical or high potassium) endogenous aspartate release from superfused cerebellar slices nor did it alter the basal or stimulated release of [3H]aspartate from preloaded slices when introduced into the superfusion medium over 30 min. However, when cerebellar slices were preincubated with 2 mM L-CPA for 2 h at concentrations that are known to be neurotoxic to the brain in vivo, but not in vitro, the stimulated endogenous glutamate and aspartate net release was significantly attenuated, as compared to controls. Basal release was not significantly affected by the introduction of L-CPA-induced cerebellar neurotoxicity may be related to the inhibition of excitatory amino acid release from the cerebellum. In conclusion, although L-CPA does not appear to directly alter NMDA receptor activity the L-CPA-induced cerebellar neurotoxicity may be related to the inhibition of excitatory amino acid release from the cerebellum.  相似文献   

15.
The dependence of intracellular glutathione, an important radical scavenger, on the extracellular glutamate and cystine concentration and the velocity of the high affinity sodium/glutamate transporter was studied in freshly-isolated Müller glial cells of the guinea-pig, kept in vitro for up to 11 h. To this end the relative Müller cell glutathione levels were measured using the fluorescent dye monochlorobimane, using different concentrations of glutamate and cystine in Ringer solution. In some experiments L-buthionine-[S,R]-sulfoximine, a blocker of glutathione synthesis, or L-trans-pyrrolidine-2,4-dicarboxylic acid and L-alpha-aminoadipic acid, inhibitors of glutamate uptake, were added. The Müller cells maintained about 80% of the normal glutathione level when maintained in Ringer solution containing 100 microM glutamate for 11 h. When under these conditions 100 microM cystine was added, the glutathione level increased to values, which were even higher than those at the beginning of the incubation period. Addition of cystine without glutamate caused a run down of the glutathione level to about 45% of the normal level, which is comparable to the run down in pure Ringer solution. Likewise, application of L-buthionine-[S,R]-sulfoximine (5 mM) lead to a strong run down of the glutathione level even in glutamate/cystine (100 microM)-containing solution. A similar suppressing effect was observed using L-trans-pyrrolidine-2,4-dicarboxylic acid and L-alpha-aminoadipic acid in the presence of 100 microM cystine and glutamate. We conclude that the intracellular glutamate concentration of the Müller cells is determined by the extracellular glutamate concentration and the velocity of the sodium/glutamate uptake. Consequently, cystine uptake into Müller cells, which is performed by the cystine/glutamate antiporter, is fueled by the sodium/glutamate transporter with intracellular glutamate. Both glutamate and cystine are also substrates for glutathione synthesis. The glutathione level is logically limited by the capacity of the sodium/glutamate transporter to provide glutamate intracellularly for, first, cystine uptake and, second, direct insertion into glutathione. Accordingly, the glutathione level is reduced when the sodium/glutamate transporter is blocked. Thus, a diminution of the glutathione level should be taken into consideration when the effects of sodium/glutamate uptake failure and reduced intracellular glutamate concentrations are discussed.  相似文献   

16.
Di- and tripeptides and peptide mimetics such as beta-lactam antibiotics are efficiently reabsorbed from the tubular lumen by a high-affinity peptide transporter. We have recently identified and characterized this H+-coupled high-affinity peptide transport system in the porcine proximal tubular cell line LLC-PK1. Here we describe for the first time the regulation of the renal high-affinity peptide cotransporter at the cellular level. Uptake of 5 microM 3H-D-Phe-L-Ala into LLC-PK1 cells was significantly increased by lowering [Ca2+]in and decreased by increasing [Ca2+] in. Moreover, it was shown that the [Ca2+]in effects on peptide transport activity were dependent on Ca2+ entry from the extracellular site (e.g., via a store-regulated capacitative Ca2+ influx). Protein kinase C (PKC) was found to transmit the effects of [Ca2+]in on peptide transport. Although we demonstrate by pHin measurements that the PKC inhibitor staurosporine did decrease the transmembrane H+ gradient and consequently should have reduced the driving force for peptide uptake, the only effect on transport kinetics of 3H-D-Phe-L-Ala observed was a significant decrease in Km from 22.7+/-2.5 microM to 10.2+/-1.9 microM with no change in maximal velocity.  相似文献   

17.
The transport of the nephrotoxic mycotoxin ochratoxin A across the renal peritubular membrane was examined in suspensions of rabbit renal proximal tubules. Ochratoxin A transport across the peritubular membrane was a high-affinity, low-capacity carrier-mediated process with a Jmax value of 0.12 +/- 0.4 nmol/mg of protein/min and a Km value of 1.4 +/- 0.1 microM. The apparent Michaelis constants for inhibition of [3H]para-aminohippurate (PAH) uptake by ochratoxin A inhibition was 1.5 microM, which is similar to the Km value for ochratoxin A uptake in tubule suspensions and suggests that ochratoxin A could be a substrate for the organic anion pathway. The capacity and affinity for peritubular ochratoxin A transport were 40-fold lower and > 100-fold greater, respectively, than those measured for the peritubular uptake of [3H]PAH in tubule suspensions. A concentration of 2.5 mM PAH, which reduced the uptake of [3H]PAH by 90%, reduced ochratoxin A uptake by only 40% to 50%, whereas probenecid concentrations of 0.6 to 2 mM reduced ochratoxin A accumulation in tubule suspensions up to approximately 80% to 90%. This probenecid-sensitive, PAH-insensitive uptake of ochratoxin A suggested that at least one mediated pathway other than the organic anion transporter was involved in the peritubular uptake of this mycotoxin. A 2 mM concentration of the fatty acid octanoate and 1.5 mM concentration of the nonsteroidal anti-inflammatory agent piroxicam were as effective as probenecid in blocking ochratoxin A uptake. The apparent Ki values for inhibition of ochratoxin A uptake by probenecid, piroxicam and octanoate were 30.5 +/- 7.9, 23.2 +/- 10.4 and 81.5 +/- 8.7 microM, respectively. The ability of octanoic acid to inhibit ochratoxin A transport to the same extent as probenecid and a greater extent than PAH suggests that a separate fatty acid transport pathway may be involved in the accumulation of ochratoxin A by suspensions of rabbit renal proximal tubules.  相似文献   

18.
Molecular cloning has recently identified a vertebrate brain-specific Na+-dependent inorganic phosphate transporter (BNPI). BNPI has strong sequence similarity to EAT-4, a Caenorhabditis elegans protein implicated in glutamatergic transmission. To characterize the physiological role of BNPI, we have generated an antibody to the protein. Immunocytochemistry of rat brain sections shows a light microscopic pattern that is suggestive of reactivity in nerve terminals. Excitatory projections are labeled prominently, and ultrastructural analysis confirms that BNPI localizes almost exclusively to terminals forming asymmetric excitatory-type synapses. Although BNPI depends on a Na+ gradient and presumably functions at the plasma membrane, both electron microscopy and biochemical fractionation show that BNPI associates preferentially with the membranes of small synaptic vesicles. The results provide anatomic evidence of a specific presynaptic role for BNPI in glutamatergic neurotransmission, consistent with the phenotype of eat-4 mutants. Because an enzyme known as the phosphate-activated glutaminase produces glutamate for release as a neurotransmitter, BNPI may augment excitatory transmission by increasing cytoplasmic phosphate concentrations within the nerve terminal and hence increasing glutamate synthesis. Expression of BNPI on synaptic vesicles suggests a mechanism for neural activity to regulate the function of BNPI.  相似文献   

19.
We aimed to ascertain whether pyrethroid insecticides could influence the vesicular transport of the excitatory amino acid glutamate. The incubation of rat cortical synaptic vesicles with resmethrin and permethrin, consistently stimulated both ATP-dependent and -independent uptake of [3H]glutamate, while not evoking depletion of its vesicular content. Both processes were counteracted by valinomycin, a dissipator of the transmembrane potential gradient (deltapsi(sv)). Meanwhile, the vesicular influx of 36Cl- anions was impaired by pyrethroid concentrations which did not affect the ATP-dependent uptake of [14C]methylamine, as a marker for the proton gradient (deltapH). Thus, the stimulation of glutamate transport appeared to involve mainly the deltapsi(sv). A self-attenuating effect of selected pyrethroids on putatively enhanced excitatory transmission in severe intoxication is suggested.  相似文献   

20.
Glutamate transporters in the tiger salamander retina were studied by autoradiographic and intracellular recording techniques. When the retina was incubated with 15 microM L-[3H]glutamate, photoreceptors and Muller cells were labeled, indicating that these cells had high-affinity glutamate uptake transporters. A much higher dose of glutamate than kainate was required in the bath to produce the same membrane depolarization in horizontal cells (HCs), and the time course of glutamate-induced depolarization was much slower than that of the kainate-induced depolarization. Since glutamate is a substrate of glutamate transporters whereas kainate is not, we attribute these differences to the buffering of extracellular glutamate by glutamate transporters in the retina. D-aspartate (D-asp) increased the efficacy of bath-applied glutamate. Dihydrokainate (DHKA) exerted little effect on glutamate efficacy when applied alone, but it increased glutamate efficacy in the presence of D-asp. These results are consistent with the notion that glutamate transporters in Muller cells are D-asp sensitive and those in photoreceptors are DHKA and D-asp sensitive. Application of DHKA (1-2 mM) did not affect the dark membrane potential or the light responses in rods and cones, but it depolarized the HC dark membrane potential and reduced the HC peak and tail light responses. Our results suggest that DHKA-sensitive glutamate transporters in photoreceptors regulate glutamate levels in rod and cone synaptic clefts. They modulate dark membrane potential and the relative rod cone inputs in retinal HCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号