首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对电动助力转向系统(EPS)中存在的模型不确定性和路面干扰问题, 提出了基于遗传算法的鲁棒H∞控制方法. 构建了EPS系统数学模型, 以驾驶员获得较小的干扰波动和卓越的鲁棒性为控制目标, 运用鲁棒H∞方法极小化干扰问题, 将系统设计中加权函数的选取表示成多目标问题, 用遗传算法对其优化求解, 得到鲁棒控制器. 分析了受到路面干扰时, 方向盘把持转矩的响应情况. 仿真结果表明, 遗传优化后的EPS鲁棒控制器有效地增强了系统的鲁棒稳定性, 提高了系统的抗干扰能力, 使驾驶员获得满意的路感, 提高了行驶安全性.  相似文献   

2.
本文介绍了电动助力转向系统的结构和工作原理,建立了该系统的动力学模型,进一步提出了系统的助力控制、回正控制以及动态阻尼控制策略.策略中采用了PI控制和PID控制方法,并讨论了控制器增益的变化对转向特性的影响.通过仿真分析比较,证明采用此控制策略的EPS能减轻汽车的转向操纵力,改善汽车的回正特性.  相似文献   

3.
This article focuses on the problems of robust stabilisation and H control for nonlinear uncertain stochastic systems with mode-dependent time delay and Markovian jump parameters represented by the Takagi–Sugeno (T-S) fuzzy model approach. The system under consideration involves parameter uncertainties, Itô-type stochastic disturbances, Markovian jump parameters and unknown nonlinear disturbances. The purpose is to design a state feedback controller such that the closed-loop system is robustly exponentially stable in the mean square and satisfies a prescribed H performance level. Novel delay-range-dependent conditions in the form of linear matrix inequalities (LMIs) are derived for the solvability of robust stabilisation and H control problem. A desired fuzzy controller can be constructed by solving a set solutions of LMIs and can be easily calculated by Matlab LMI control toolbox. Finally, a numerical example is presented to illustrate the proposed method.  相似文献   

4.
针对一类不确定非线性系统的跟踪控制问题,在考虑建模误差、参数不确定和外部干扰情况下,以良好的跟踪性能及强鲁棒性为目标,提出基于自组织小脑模型(self-organizing wavelet cerebellar model articulation controller,SOWCMAC)的鲁棒自适应积分末端(terminal)滑模控制策略.首先,将小脑模型、自组织神经网络和小波函数各自优势相结合,给出一种SOWCMAC,以保证干扰估计方法具有快速学习能力和更好的泛化能力.其次,设计两种改进的terminal滑模面构造方法,并分别给出各自的收敛时间.然后,基于SOWCMAC和改进的积分terminal滑模面,给出不确定非线性系统鲁棒自适应非奇异terminal控制器的设计过程,其中通过构造自适应鲁棒项抑制干扰估计误差对系统跟踪性能的影响,并利用Lyapunov理论证明闭环系统的稳定性.最后,将该方法应用于近空间飞行器姿态的控制仿真实验,结果表明所提出方法有效性.  相似文献   

5.
In this paper, a novel robust adaptive fuzzy variable structure control (RAFVSC) scheme is proposed for a class of uncertain nonlinear systems. The uncertain nonlinear system and gain functions originating from modeling errors and external disturbances are all unstructured (or non-repeatable), state-dependent and completely unknown. The Takagi–Sugeno type fuzzy logic systems are used to approximate uncertain functions in the systems and the RAFVSC is designed by use of the input-to-state stability (ISS) approach and small gain theorem. In the algorithm, there are three advantages which are that the asymptotic stability of adaptive control in the presence of unstructured uncertainties can be guaranteed, the possible controller singularity problem in some of existing adaptive control schemes using feedback linearization techniques can be removed and the adaptive mechanism with minimal learning parameterizations can be achieved. The performance and effectiveness of the proposed methods are discussed and illustrated with two simulation examples.  相似文献   

6.
In this paper, robust fuzzy model predictive control of a class of nonlinear discrete systems subjected to time delays and persistent disturbances is investigated. Based on the modeling method of delay difference inclusions, nonlinear discrete time-delay systems can be represented by T–S fuzzy systems comprised of piecewise linear delay difference equations. Moreover, Lyapunov–Razumikhin function (LRF), instead of Lyapunov–Krasovskii functional (LKF), is employed for time-delay systems due to its ability to reflect system original state space and its advantages in controller synthesis and computation. The robust positive invariance and input-to-state stability with respect to disturbance under such circumstances are investigated. A robust constraint set is adopted that the system state is converged to this set round the desired point. In addition, the controller synthesis conditions are derived by solving a set of matrix inequalities. Simulation results show that the proposed approach can be successfully applied to the well-known continuous stirred tank reactor (CSTR) systems subjected to time delay.  相似文献   

7.
This paper concerns the problems of non-fragile guaranteed cost control (GCC) for nonlinear systems with or without parameter uncertainties. The Takagi–Sugeno (T–S) fuzzy hyperbolic model is employed to represent the nonlinear system. The non-fragile controller is designed by parallel distributed compensation (PDC) method, and some sufficient conditions are formulated via linear matrix inequalities (LMIs) such that the system is asymptotically stable and the cost function satisfies an upper bound in the presence of the additive controller perturbations. The above approach is also extended to the non-fragile GCC of T–S fuzzy hyperbolic system with parameter uncertainties, and the robust non-fragile GCC scheme is obtained. The main advantage of the non-fragile GCC based on the T–S fuzzy hyperbolic model is that it can achieve small control amplitude via ‘soft’ constraint approach. Finally, a numerical example and the Van de Vusse example are given to illustrate the effectiveness and feasibility of the proposed approach.  相似文献   

8.
建立电动助力转向系统的动力学模型并设计出EPS控制框图。根据该系统特性,选择基于H∞混合灵敏度的控制方法。在对S/T奇异值曲线的深入观察和研究的基础上,提出一种根据系统频域关键参数先构造闭环函数然后反推出系统控制器的方法。EPS系统频谱分析及路面干扰仿真结果表明,该方法设计的控制器简单有效,具有很好的鲁棒性能和鲁棒稳定性。  相似文献   

9.
This paper presents a robust adaptive fuzzy neural controller (AFNC) suitable for identification and control of a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems. The proposed controller has the following salient features: 1) self-organizing fuzzy neural structure, i.e., fuzzy control rules can be generated or deleted automatically; 2) online learning ability of uncertain MIMO nonlinear systems; 3) fast learning speed; 4) fast convergence of tracking errors; 5) adaptive control, where structure and parameters of the AFNC can be self-adaptive in the presence of disturbances to maintain high control performance; 6) robust control, where global stability of the system is established using the Lyapunov approach. Simulation studies on an inverted pendulum and a two-link robot manipulator show that the performance of the proposed controller is superior.  相似文献   

10.
基于观测器的一类非线性系统的自适应模糊控制   总被引:1,自引:1,他引:0  
针对一类有界的不确定非线性系统设计了模糊观测器和自适应控制器.该方法不需要系统状态完全可测的条件,而是通过模糊观测器估计系统的状态变量并且能保证观测误差是一致最终有界的.该自适应控制器取得了良好的控制效果并且保证了跟踪误差的一致最终有界性.仿真结果表明了本文所提出的方法有效性.  相似文献   

11.
针对异步电动机(IM)转矩脉动以及抗干扰能力差的问题,设计了基于模糊滑模控制(FSMC)与负载转矩补偿的新型直接转矩控制(DTC),取代传统PID速度调节器的是一种滑模控制器.为解决滑模控制器中负载转矩脉动的问题,用模糊逻辑控制器取代了传统滑模控制律中的不连续部分,可以明显降低异步电动机在低速运转时的转矩脉动.提出了一种负载转矩观测器来估计未知的负载转矩.负载转矩观测器用来估计负载转矩扰动,估计作为速度环的前馈补偿.仿真结果表明:在低速负载转矩扰动时,该设计具有更好的动态响应和速度性能、更高鲁棒性和更强的抗干扰能力.  相似文献   

12.
基于观测器的不确定T-S模糊系统鲁棒镇定   总被引:1,自引:1,他引:0  
为带有参数不确定性的T-S模糊控制系统提出了新的基于观测器的鲁棒输出镇定条件. 该条件用来设计模糊控制器和模糊观测器. 为了设计模糊控制器和模糊观测器, 用T-S模糊模型来表示非线性系统, 并运用平行分布补偿观念. 充分条件基于二次Lyapunov函数, 通过将模糊系统的鲁棒镇定条件表述为一系列矩阵不等式, 比以往文献中列出的条件具有更小的保守性. 该不等式为双线性矩阵不等式, 可分两步骤先后解得使T-S模糊系统镇定的控制器增益和观测器增益. 最后, 通过对一个具有不确定性的连续时间非线性系统控制的例子证明了提出方法比以往方法更宽松.  相似文献   

13.
A robust discrete terminal sliding mode repetitive controller is proposed for a class of nonlinear positioning systems with parameter uncertainties and nonlinear friction. The terminal sliding mode control (TSMC) part is designed to improve the transient characteristics of the system, as well as the robustness against parameter uncertainties, nonperiodic nonlinearities, and disturbances. The repetitive control (RC) part is then integrated to eliminate the effects of the periodic uncertainties present in the system. Moreover, a pure phase lead compensator is incorporated into the RC to improve the tracking at high frequencies. A robust stability analysis and an analysis of the finite time convergence properties of the proposed controller are also provided in this paper. Simulation testing and an experimental validation using a linear actuator system with nonlinear friction and parameter uncertainties are conducted to verify the effectiveness of the proposed controller.  相似文献   

14.
This paper addresses a three-dimensional (3D) path following control problem for underactuated autonomous underwater vehicle (AUV) subject to both internal and external uncertainties. A two-layered framework synthesizing the 3D guidance law and heuristic fuzzy control is proposed to achieve robust adaptive following along a predefined path. In the first layer, a 3D guidance controller for underactuated AUV is presented to guarantee the stability of path following in the kinematics stage. In the second layer, a heuristic adaptive fuzzy algorithm based on the guidance command and feedback linearization Proportional-Integral-Derivative (PID) controller is developed in the dynamics stage to account for the nonlinear dynamics and system uncertainties, including inaccuracy modelling parameters and time-varying environmental disturbances. Furthermore, the sensitivity analysis of the heuristic fuzzy controller is presented. Against most existing methods for 3D path following, the proposed robust fuzzy control scheme reduces the design and implementation costs of complicated dynamics controller, and relaxes the knowledge of the accuracy dynamics modelling and environmental disturbances. Finally, numerical simulation results validate the effectiveness of the proposed control framework and illustrate the outperformance of the proposed controller as well.  相似文献   

15.
针对电动助力转向系统存在系统模型不确定性和各种干扰。以驾驶员获得良好的路感和系统具有较小的力矩波动为控制目标。根据生物免疫系统在干扰和不确定性环境中具有较强鲁棒性和自适应性,借鉴其反馈响应过程的调节规律,提出了一种模糊免疫PID控制策略。仿真结果表明,这种控制器抗干扰能力强,具有较快的响应速度,可有效抑制模型参数不确定、路面冲击等所引起的各种干扰和噪声。  相似文献   

16.
一类非线性离散系统模糊控制器的分析和设计   总被引:1,自引:0,他引:1  
针对一类非线性离散不确定系统,在系统状态不可测的情况下,以T-S模型描述不同状态空间的局部动态区域,并通过中心平均反模糊化、乘积推理、单点模糊化方法得到全局模糊系统模型.基于李亚普诺夫理论和线性矩阵不等式,设计了一种基于观测器的鲁棒控制器,并对离散状态下的此类系统进行了稳定分析.最后通过M ATLAB仿真,证明了该方法的有效性.  相似文献   

17.
A novel model reference adaptive robust fuzzy control algorithm is presented for ship steering autopilot, which is an uncertain nonlinear system. In the proposed algorithm, fuzzy logic systems have been used to approximate lumped unknown function in the ship steering systems and the adaptive mechanism with minimal learning parameter, i.e. only one parameter, has been achieved by use of Lyapunov approach. The proposed methodology is verified using the simulation mode of the Dalian Maritime University's ocean-going training ship named Yulong. It is shown that the proposed algorithm guarantees that the ship steering autopilot system is asymptotically stable and its tracking error can approach to zero.  相似文献   

18.
本文将H2/H∞鲁棒控制理论应用于电动助力转向系统的控制策略研究,在建立前轮转向理想跟踪模型基础上,提出一种基于H2/H∞模型跟踪技术的主动转向控制方法,并对设计的控制器进行仿真分析与对比.通过仿真分析,从理论上验证基于H2/H∞跟踪控制理论的转向控制器可以适用于汽车的EPS转向系统,能很好地跟随理想车辆转向模型,有利于提高车辆的主动安全和稳定性.  相似文献   

19.
Finite‐state model predictive control (FS‐MPC) has been widely used for controlling power converters and electric drives. Predictive torque control strategy (PTC) evaluates flux and torque in a cost function to generate an optimal inverter switching state in a sampling period. However, the existing PTC method relies on a traditional proportional‐integral (PI) controller in the external loop for speed regulation. Consequently, the torque reference may not be generated properly, especially when a sudden variation of load or inertia takes place. This paper proposes an enhanced predictive torque control scheme. A Takagi‐Sugeno fuzzy logic controller replaces PI in the external loop for speed regulation. Besides, the proposed controller generates a proper torque reference since it plays an important role in cost function design. This improvement ensures accurate tracking and robust control against different uncertainties. The effectiveness of the presented algorithms is investigated by simulation and experimental validation using MATLAB/Simulink with dSpace 1104 real‐time interface.  相似文献   

20.
The robust receding horizon control (RHC) synthesis approach is developed in this paper, for the simultaneous tracking and regulation problem (STRP) of wheeled vehicles with bounded disturbances. Considering the bounded disturbances, we firstly provide a robust positively invariant (RPI) set and associated feedback controller for the perturbed vehicles, which contribute to the foundation of the robust RHC synthesis approach. Then, by extending the tube‐based approach introduced in the article of Mayne et al (robust model predictive control of constrained linear systems with bounded disturbances in Automatica, 2005, vol. 41) to the STRP of wheeled vehicles, we employ the designed RPI set to determine the robust tube and terminal state region, and further construct a nominal optimal control problem. The actual control input is implemented by correcting the solved nominal input with the designed feedback controller. Following the contributed properties of the developed RPI set and extended tube‐based approach, a robust RHC algorithm is finally proposed with the guarantees of recursive feasibility and robust convergence, which can also be adapted for real‐time implementation. Additionally, due to the elaborate control design, the effect of disturbances can be completely nullified to achieve better tracking performance. The effectiveness and advantage of the proposed approach are illustrated by two simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号