首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles of CexZr1−xO2 (x = 0.75, 0.62) were prepared by the oxidation-coprecipitation method using H2O2 as an oxidant, and characterized by N2 adsorption, XRD and H2-TPR. CexZr1−xO2 prepared had single fluorite cubic structure, good thermal stability and reduction property. With the increasing of Ce/Zr ratio, the surface area of CexZr1−xO2 increased, but thermal stability of CexZr1−xO2 decreased. The surface area of Ce0.62Zr0.38O2 was 41.2 m2/g after calcination in air at 900 °C for 6 h. TPR results showed the formation of solid solution promoted the reduction of CeO2, and the reduction properties of CexZr1−xO2 were enhanced by the cycle of TPR-reoxidation. The Pd-only three-way catalysts (TWC) were prepared by the impregnation method, in which Ce0.75Zr0.25O2 was used as the active washcoat and Pd loading was 0.7 g/L. In the test of Air/Fuel, the conversion of C3H8 was close to 100% and NO was completely converted at λ < 1.025. The high conversion of C3H8 was induced by the steam reform and dissociation adsorption reaction of C3H8. Pd-only catalyst using Ce0.75Zr0.25O2 as active washcoat showed high light off activity, the reaction temperatures (T50) of 50% conversion of CO, C3H8 and NO were 180, 200 and 205 °C, respectively. However, the conversions of C3H8 and NO showed oscillation with continuously increasing the reaction temperature. The presence of La2O3 in washcoat decreased the light off activity and suppressed the oscillation of C3H8 and NO conversion. After being aged at 900 °C for 4 h, the operation windows of catalysts shifted slightly to rich burn. The presence of La2O3 in active washcoat can enhance the thermal stability of catalyst significantly.  相似文献   

2.
Pt-Rh/CexZr1−xO2-Al2O3 with 0.6 and 1.0 wt.% noble metal loadings were prepared and characterized for their metal dispersion with respect to CexZr1−xO2-free Pt-Rh/Al2O3 in fresh, thermally aged and oxychlorinated states. Thermal ageing at 973 K led to loss of metal dispersion in all cases but to negligible effect on the dispersion of the CexZr1−xO2 component where present. Oxychlorination was able to fully recover metal dispersion in all cases but led to different effects on the redox properties of CexZr1−xO2 which appeared to be related to the metal loadings. Despite showing improved dispersion following regeneration, higher loaded catalyst showed no improvement in light-off performance for either NO reduction or CO oxidation and showed poorer oxygen storage (OSC) ability, particularly at higher temperatures. Lower loaded catalyst showed improved dispersion, improved OSC and reduced light-off temperatures for NO reduction and CO oxidation after oxychlorination compared to that in the thermally aged state.  相似文献   

3.
SO2, which is an air pollutant causing acid rain and smog, can be converted into elemental sulfur in direct sulfur recovery process (DSRP). SO2 reduction was performed over catalyst in DSRP. In this study, SnO2-ZrO2 catalysts were prepared by a co-precipitation method, and CO and coal gas, which contains H2, CO, CO2 and H2O, were used as reductants. The reactivity profile of the SO2 reduction over the catalysts was investigated at the various reaction conditions as follows: reaction temperature of 300–550 °C, space velocity of 5000–30,000 cm3/g-cat. h, [reductant]/[SO2] molar ratio of 1.0–4.0 and Sn/Zr molar ratio of SnO2-ZrO2 catalysts 0/1, 2/8, 3/5, 5/5, 2/1, 3/1, 4/1 and 1/0. SnO2-ZrO2 (Sn/Zr = 2/1) catalyst showed the best performance for the SO2 reduction in DSRP on the basis of our experimental results. The optimized reaction temperature and space velocity were 325 °C and 10,000 cm3/g-cat. h, respectively. The optimal molar ratio of [reductant]/[SO2] varied with the reductants, that is, 2.0 for CO and 2.5 for coal gas. SO2 conversion of 98% and sulfur yield of 78% were achieved with the coal gas.  相似文献   

4.
A series of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts (x = 0–1) were prepared. The structure of the catalysts was characterized using XRD, SEM and H2-TPR. The catalytic activity of the catalysts for the combustion of methane was evaluated. The results indicated that in the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts the surface phase structure were the Ce1−xCuxO2−x solid solution, -Al2O3 and γ-Al2O3. The surface particle shape and size were different with the variety of the molar ratio of Ce to Cu in the Ce1−xCuxO2−x solid solution. The Cu component of the Ce1−xCuxO2−x/Al2O3/FeCrAl catalysts played an important role to the catalytic activity for the methane combustion. There were the stronger interaction among the Ce1−xCuxO2−x solid solution and the Al2O3 washcoats and the FeCrAl support.  相似文献   

5.
The CexZr1−xO2 solid solution was used as a support of a palladium catalyst for methanol decomposition to synthesis gas at low temperature. All Pd-containing catalysts tested in this study showed high selectivity to synthesis gas (over 96%). The Pd supported on the composite oxide with a Ce/Zr molar ratio of 4/1 exhibited the highest activity. Pd/Ce0.8Zr0.2O2 (17 wt.%) (cop) (prepared by coprecipitation method) showed a conversion of 51.2% for the methanol decomposition at 473 K, which was higher than those over 17 wt.% Pd/CeO2 (cop) (40.7%) and 17 wt.% Pd/ZrO2 (cop) (24.3%) at 473 K. The 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst showed a higher BET surface area and smaller Pd particles than those of 17 wt.% Pd/CeO2 (cop). Moreover, a more active Pdσ+ state could be maintained by Zr4+ ion modification due to promotion of the oxygen mobility and enhancement of the reductibility and increase in the acid sites of the CeO2 support. The 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst showed a much higher conversion (51.2%) than that over 17 wt.% Pd/Ce0.8Zr0.2O2 (imp) (prepared by impregnation method) (17.2%) at 473 K. This is due to the 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) possessing many small Pd particles. The 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst showed an initial conversion of 51.2% at 473 K but the conversion decreased to 43.1% after 24 h on stream. This deactivation was attributed to carbonaceous deposit on the catalyst surface. The amounts of coke on the 17 wt.% Pd/Ce0.8Zr0.2O2 (cop) catalyst were 0.9 wt.% after 24 h on stream at 473 K and 2.1 wt.% after 1 h on stream at 523 K.  相似文献   

6.
Water–gas shift reaction was studied over two nanostructured CuxCe1−xO2−y catalysts: a Cu0.1Ce0.9O2−y catalyst prepared by a sol–gel method and a Cu0.2Ce0.8O2−y catalyst prepared by co-precipitation method. A commercial low temperature water–gas shift CuO–ZnO–Al2O3 catalyst was used as reference. The kinetics was studied in a plug flow micro reactor at an atmospheric pressure in the temperature interval between 298 and 673 K at two different space velocities: 5.000 and 30.000 h−1, respectively. Experimentally estimated activation energy, Eaf, of the forward water–gas shift reaction at CO/H2O = 1/3 was 51 kJ/mol over the Cu0.1Ce0.9O2−y, 34 kJ/mol over the Cu0.2Ce0.8O2−y and 47 kJ/mol over the CuO–ZnO–Al2O3 catalyst. A simple rate expression approximating the water–gas shift process as a single reversible surface reaction was used to fit the experimental data in order to evaluate the rate constants of the forward and backward reactions and of the activation energy for the backward reaction.  相似文献   

7.
徐术  费兆阳  陈献  汤吉海  崔咪芬  乔旭 《化工进展》2015,34(12):4248-4253
以硝酸铈、硝酸镧为前体,用氨水共沉淀法制备了一系列Ce1-xLaxO2(x≤0.5)催化剂,利用XRD、N2吸附-脱附、SEM、Raman、H2-TPR和OSC对催化剂的物理化学性质进行了表征,并考察其在甲烷氧氯化反应中的催化性能。结果表明:Ce1-xLaxO2催化剂的氧化还原性质随着镧含量的变化发生显著改变,并且这一性质的变化与反应的转化率及产物分布具有较强的联系。Ce1-xLaxO2表面氧物种的活泼性对催化剂活性影响显著,而体相氧物种容易将生成的甲烷氯化物深度氧化。在Ce1-xLaxO2(x<0.3)催化剂上表面氧物种起主导作用,氯甲烷为主要反应产物,Ce0.8La0.2O2催化剂上氯甲烷选择性最高为52%。在体相氧物种更活泼的Ce0.7La0.3O2和Ce0.5La0.5O2上产物中CO的选择性显著上升,Ce0.5La0.5O2催化剂上CO选择性高达48%。稳定性测试表明Ce0.8La0.2O2催化剂具有良好的稳定性。  相似文献   

8.
The thermodynamic redox properties for a series of ceria–zirconia solid solutions have been measured by determining their oxidation isotherms between 873 and 1073 K. Isotherms were obtained using Coulometric titration and using O2 titration of samples equilibrated in flowing mixtures of H2 and H2O. Samples having the following compositions were studied after calcinations at 973 and 1323 K: CeO2, Ce0.92Zr0.08O2, Ce0.81Zr0.19O2, Ce0.59Zr0.41O2, Ce0.50Zr0.50O2, Ce0.25Zr0.75O2, Ce0.14Zr0.86O2, and ZrO2. While the oxidation enthalpy for CeO2 was between −750 and −800 kJ/mol O2, the oxidation enthalpies for each of the solid solutions were between −500 and −550 kJ/mol O2 and essentially independent of the extent of reduction. The shapes of the isotherms for the solid solutions were affected by the oxidation entropies, which depended strongly on the sample composition and the extent of reduction. With CeO2, Ce0.92Zr0.08O2, and Ce0.14Zr0.86O2, the samples remained single-phase after calcination at 1323 K and the thermodynamic redox properties were unaffected. By contrast, Ce0.59Zr0.41O2 formed two phases following calcination at 1323 K, Ce0.78Zr0.22O2 (71 wt.%) and Ce0.13Zr0.87O2 (29 wt.%); the isotherm changed to that which would be expected for a physical mixture of the two phases. A model is presented which views reduction of the solid solutions in terms of the local atomic structure, with the formation of “pyrochlore-like” clusters causing the increased reducibility of the solid solutions. Some of the changes in reducibility are associated with the number of sites from which oxygen can be removed in order to form pyrochlore-like clusters.  相似文献   

9.
The effects of ZrO2 content on the CO oxidation activity in a series of CuOx/CexZr1−xO2 (x = 0, 0.15, 0.5, 0.7 and 1) catalysts were investigated, both in the absence and in the presence of H2, i.e. preferential CO oxidation—PROX. The investigation was performed under light-off conditions to focus the effects of transients and shut-down/start-up cycles on the performance; such phenomena are expected to affect the activity of PROX catalysts in small/delocalised fuel reformers. Evidence has been obtained for a transition from an “oxidized” towards a “reduced” state of the catalyst under the simulated PROX reaction conditions as a function of the reaction temperature, leading to different active species under the reaction conditions. Both CO oxidation activity and PROX selectivity appear to be affected by this process. IR characterisation of the surface copper species suggests an important role of reduced cerium sites in close contact with copper clusters on the CO oxidation activity at low temperatures.  相似文献   

10.
Catalytic methane combustion and CO oxidation were investigated over AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) perovskites prepared by citrate method and calcined at 1073 K. The catalysts were characterized by X-ray diffraction (XRD). Redox properties and the content of Fe4+ were derived from temperature programmed reduction (TPR). Specific surface areas (SA) of perovskites were in 2.3–9.7 m2 g−1 range. XRD analysis showed that LaFeO3, NdFeO3, SmFeO3 and LaFe1−xMgxO3 (x·0.3) are single phase perovskite-type oxides. Traces of La2O3, in addition to the perovskite phase, were detected in the LaFe1−xMgxO3 catalysts with x=0.4 and 0.5. TPR gave evidence of the presence in AFeO3 of a very small fraction of Fe4+ which reduces to Fe3+. The fraction of Fe4+ in the LaFe1−xMgxO3 samples increased with increasing magnesium content up to x=0.2, then it remained nearly constant. Catalytic activity tests showed that all samples gave methane and CO complete conversion with 100% selectivity to CO2 below 973 and 773 K, respectively. For the AFeO3 materials the order of activity towards methane combustion is La>Nd>Sm, whereas the activity, per unit SA, of the LaFe1−xMgxO3 catalysts decreases with the amount of Mg at least for the catalysts showing a single perovskite phase (x=0.3). Concerning the CO oxidation, the order of activity for the AFeO3 materials is Nd>La>Sm, while the activity (per unit SA) of the LaFe1−xMgxO3 catalysts decreases at high magnesium content.  相似文献   

11.
Catalytic performance of Sn/Al2O3 catalysts prepared by impregnation (IM) and sol–gel (SG) method for selective catalytic reduction of NOx by propene under lean burn condition were investigated. The physical properties of catalyst were characterized by BET, XRD, XPS and TPD. The results showed that NO2 had higher reactivity than NO to nitrogen, the maximum NO conversion was 82% on the 5% Sn/Al2O3 (SG) catalyst, and the maximum NO2 conversion reached nearly 100% around 425 °C. Such a temperature of maximum NO conversion was in accordance with those of NOx desorption accompanied with O2 around 450 °C. The activity of NO reduction was enhanced remarkably by the presence of H2O and SO2 at low temperature, and the temperature window was also broadened in the presence of H2O and SO2, however the NOx desorption and NO conversion decreased sharply on the 300 ppm SO2 treated catalyst, the catalytic activity was inhibited by the presence of SO2 due to formation of sulfate species (SO42−) on the catalysts. The presence of oxygen played an essential role in NO reduction, and the activity of the 5% Sn/Al2O3 (SG) was not decreased in the presence of large oxygen.  相似文献   

12.
Supported LaCoO3 perovskites with 10 and 20 wt.% loading were obtained by wet impregnation of different Ce1−xZrxO2 (x = 0–0.3) supports with a solution prepared from La and Co nitrates, and citric acid. Supports were also prepared using the “citrate method”. All materials were calcined at 700 °C for 6 h and investigated by N2 adsorption at −196 °C, XRD and XPS. XRD patterns and XPS measurements evidenced the formation of a pure perovskite phase, preferentially accumulated at the outer surface. These materials were comparatively tested in benzene and toluene total oxidation in the temperature range 100–500 °C. All catalysts showed a lower T50 than the corresponding Ce1−xZrxO2 supports. Twenty weight percent LaCoO3 catalysts presented lower T50 than bulk LaCoO3. In terms of reaction rates per mass unit of perovskite calculated at 300 °C, two facts should be noted (i) the activity order is more than 10 times higher for toluene and (ii) the reverse variation with the loading as a function of the reactant, a better activity being observed for low loadings in the case of benzene. For the same loading, the support composition influences drastically the oxidative abilities of LaCoO3 by the surface area and the oxygen mobility.  相似文献   

13.
H. He  H. X. Dai  C. T. Au 《Catalysis Today》2004,90(3-4):245-materials
Defective structures, surface textures, oxygen mobility, oxygen storage capacity (OSC), and redox properties of RE0.6Zr0.4O2 and of RE0.6Zr0.4−xYxO2 (RE=Ce, Pr; x=0, 0.05) solid solutions have been investigated using X-ray diffraction (XRD), temperature-programmed desorption (TPD), temperature-programmed reduction (TPR), O2−H2 and O2−CO titration, 18O/16O isotope exchange, CO pulsing reaction, and X-ray photoelectron spectroscopy (XPS) techniques. The effects of doping noble metal onto RE0.6Zr0.4−xYxO2 on oxygen mobility and surface oxygen activities have also been studied. Based on the experimental outcomes, we conclude that: (i) a Pr-based solid solution has better redox behavior than a Ce-based one; (ii) incorporation of yttrium ions in the lattices of CZ and PZ solid solutions could result in an enhancement in oxygen vacancy concentration, Ce4+/Ce3+ and Pr4+/Pr3+ redox properties, lattice oxygen mobility, and oxygen storage capacity; and (iii) doping the noble metal (Rh, Pt, and Pd) onto RE-based solid solution has positive effect on the properties concerned in this work.  相似文献   

14.
We have investigated the regeneration of a nitrated or sulphated model Pt/Ba-based NOx trap catalyst using different reductants. H2 was found to be more effective at regenerating the NOx storage activity especially at lower temperature, but more importantly over the entire temperature window after catalyst ageing. When the model NOx storage catalyst is sulphated in SO2 under lean conditions at 650 °C almost complete deactivation can be seen. Complete regeneration was not achieved, even under rich conditions at 800 °C in 10% H2/He. Barium sulphate formed after the high temperature ageing was partly converted to barium sulphide on reduction. However, if the H2 reduced sample was exposed to a rich condition in a gas mixture containing CO2 at 650 °C, the storage activity can be recovered. Under these rich conditions the S2− species becomes less stable than the CO32−, which is active for storing NOx. Samples which were lean aged in air containing 60 ppm SO2 at <600 °C, after regeneration at λ=0.95 at 650 °C, have a similar activity window to a fresh catalyst. It is, therefore, important that CO2 is present during the rich regenerations of the sulphated model samples (as of course it would be under real conditions), as suppression of carbonate formation can lead to sulphide formation which is inactive for NOx storage.  相似文献   

15.
In this work, a kinetic model is constructed to simulate sulfur deactivation of the NOx storage performance of BaO/Al2O3 and Pt/BaO/Al2O3 catalysts. The model is based on a previous model for NOx storage under sulfur-free conditions. In the present model the storage of NOx is allowed on two storage sites, one for complete NOx uptake and one for a slower NOx sorption. The adsorption of SOx is allowed on both of these NOx storage sites and on one additional site which represent bulk storage. The present model is built-up of six sub-models: (i) NOx storage under sulfur-free conditions; (ii) SO2 storage on NOx storage sites; (iii) SO2 oxidation; (iv) SO3 storage on bulk sites; (v) SO2 interaction with platinum in the presence of H2; (vi) oxidation of accumulated sulfur compounds on platinum by NO2. Data from flow reactor experiments are used in the implementation of the model. The model is tested for simulation of experiments for NOx storage before exposure to sulfur and after pre-treatments either with SO2 + O2 or SO2 + H2. The simulations show that the model is able to describe the main features observed experimentally.  相似文献   

16.
Pd-loaded Ce0.6Zr0.4O2 solid solutions supported on Al2O3 are investigated as catalysts for the reduction of NO by CO. The attention is focused on the role of the Ce0.6Zr0.4O2 and of the Pd dispersion on the catalytic activity. The system shows a very high activity below 500 K, which is almost independent on the Pd dispersion. The high activity is attributed to a promoting effect of the Ce0.6Zr0.4O2 on the NO conversion. Investigation of the influence of high temperature treatments disclosed a thermal stabilisation of both Ce0.6Zr0.4O2 and Al2O3 in the Ce0.6Zr0.4O2/Al2O3 system.  相似文献   

17.
The effect of SO2 on the NOx storage capacity and oxidation and reduction activities of a model Pt/Rh/BaO/Al2O3 NOx storage catalyst was investigated. Addition of 2.5, 7.5 or 25 vol. ppm SO2 to a synthetic lean exhaust gas caused deactivation of the NOx storage function, the oxidation activity and the reduction activity of the catalyst. The degree of deactivation of the NOx storage capacity was found to be proportional to the total SO2 dose that the catalyst had been exposed to. SO2 was found to be accumulated in the catalyst as sulphate.  相似文献   

18.
Structural (XRD) and spectroscopic (EPR, IR and Raman) investigations were performed to elucidate the influence of CeO2 content on the phase composition and surface chemistry of CexZr1−xO2 solid solutions (x = 0.10–0.85), interacting with NO and NO2 in the absence and presence of oxygen. Strong influence of ceria loading on the adsorption modes of both nitrogen oxides and the nature of the resultant surface species was revealed. Adsorption of NO led to formation of mononitrosyl complexes, dimers and N2O, whereas interaction of NO2 with the ceria–zirconia catalyst resulted in the adsorbate disproportionation or coupling, depending on the sample composition.  相似文献   

19.
A series of 1 wt.%Pt/xBa/Support (Support = Al2O3, SiO2, Al2O3-5.5 wt.%SiO2 and Ce0.7Zr0.3O2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NOx trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO2-TPD. At high temperature (400 °C) in the absence of CO2 and H2O, the NOx storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO2 decreased catalyst performances. The inhibiting effect of CO2 on the NOx uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NOx storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO2 and H2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO2 was responsible for the loss of NOx storage capacity at 400 °C. Finally, under realistic conditions (H2O and CO2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NOx uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO2 competition for the storage sites.  相似文献   

20.
Pt/ZrO2 and Pt/Ce0.14Zr0.86O2 catalysts containing 0.5 and 1.5 wt.% Pt were studied in order to evaluate the effect of the support reducibility and metal dispersion on the catalyst stability for the partial oxidation and the combined partial oxidation and CO2 reforming of methane. The Pt/Ce0.14Zr0.86O2 catalysts proved to be more active, stable and selective than Pt/ZrO2 catalysts during the partial oxidation reaction. No increase in deactivation was observed when the CH4:O2 feed ratio was increased from 2:1 to 4:1. In addition, no water formation was observed at the high CH4:O2 ratios. The activity of the catalyst is dependent upon both the dispersion and the ability of the catalyst to resist carbon deposition.

The addition of CO2 resulted in a decrease in the methane conversion and a decrease in the H2/CO ratio for the Ce0.14Zr0.86O2 and ZrO2 supported catalysts. Small increases in the temperature of the bed have been recorded during the partial oxidation reaction. However, within a few minutes the temperature stabilizes below the furnace temperature providing indirect evidence for the combined combustion and reforming mechanisms previously proposed. The 1.5 wt.% Pt/CeZrO2 catalyst shows promise for the autothermal reforming reaction based on the stability during transient operation.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号