首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in the st14steel sheet was resulted from the local coarse grains which were produced during hot-rolling due to the critical deformation in dual-phase zone. During deep drawing, the coarse grains with {100}<001> microtexture can slip on the {112}<111> slip system to form bulging and yields orange peel defects, while the coarse grains with {112}<110>orientation do not form the defect as the Schmid factor of {112}<111> slip system in it equals zero.  相似文献   

2.
The {0001} face develops on the habit of self-frequency doubling laser crystal Yb: YAl3(BO3)4 (YbYAB) only under high growth rate condition, and its morphology is rough. To study the growth mechanism of {0001} face, we have observed the growth morphology on {0001} polishing section by atomic force microscopy (AFM). A series of AFM images captured in different growth durations on the {0001} polishing section reflect the crystal growth process. It is shown that the growth morphology on the {0001} polishing section was rough with many hillocks at the first growth stage, and it can become smooth finally, although the growth morphology on the {0001} face develoFed naturally on YbYAB crystal habit is always rough. On the smooth {0001} surface formed at the last growth stage, there aresome triangular pits. This fact is different from that of hillocks in most crystal growth morphologies. AFM can easilydistinguish the pits or hillocks on the surface, but differential interfere contrast microscopy (DIC) can not do. Theorientation of the triangular pits is just the opposite to the triangular {0001} faces. The chemical etching patternis also composed of this kind of triangular pits. These growth morphology and etching pattern of the {0001} facesshow 3m symmetry, but the point group of YbYAB crystal is 32. The symmetric contradiction between morphologyand point group does not exist for quartz, although whichsurface morphology we can distinguish the right form ormorphology we can not do. The reason for the symmetricand its point group is not known yet.has the same point group as YbYAB. From quartz {0001}left form of the crystal, but from YbYAB {0001} surfacecontradiction between YbYAB {0001} surface morphology and its point group is not known yet.  相似文献   

3.
The stress characteristics in the anisotropic bicrystal and tricrystal specimens were analyzed using the anisotropic elastic model, orthotropic Hill‘s model and rate-dependent crystallographic model. The finite element analysis results show that non-uniform stresses are induced by the grain boundary. For bicrystal specimens in different crystallographic orientations, there exist stress concentrations and high stress gradients nearby the boundaries. The activation and slipping of the slip systems are dependent on the crystallographic orientations of the grains and also on the relative crystallographic orientations of the two adjoining grains. For the tricrystal specimens, there is not always any stress concentrations in the triple junction, and the concentration degree depends on the relative crystallographic orientations of the three grains. Different from the bicrystal specimens, there may be or no stress concentration in the vicinity of grain boundaries for the tricrystal specimens, which depends on the relative crystallographic orientations of the three grains. The stress concentration near to the grain boundaries and triple junction can be high enough for the local plastic deformation, damage and voiding or cracking even when the whole specimen is still under the elastic state.It can be further concluded that homogeneous assumption for polycrystalline materials is not suitable to study the detailed meso- or micro-mechanisms for damaging and fracturing.  相似文献   

4.
Micron-scale face-centered cubic titanium phase(named as δ phase) were noticed in the re-melted zone of laser surface re-melted commercially pure titanium plate.The morphology,sub-structure,orientation and distribution of δ phase were investigated by scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.Three kind formation processes of δ phase were put forward based on the investigation.The first one is α'→δ transformation which takes place in single α'grains and leads to the orientation relationship {001}δ//{0001}α' 110 δ// 1120 α'.The second one is β→α'+ δ transformation which takes place at α'/α'interfaces and leads to the orientation relationship{001}δ//110β110 δ//111β.The third one is another kind of β→α'+ δ transformation that takes place at α'/α'interfaces and leads to the orientation relationship111δ//110β 110 δ// 111 β.It is believed that the transformations of δ phase are stress assistant ones and in the present investigation,the phase transformation stress of β→α'transformation acts as the assistant driving force for the formation of δ phase.  相似文献   

5.
Finite element (FE) analysis was employed to investigate the casting microcrack and micropore growth in nickel-base single-crystal superalloys DD3. Based on the finite deformation rate-dependent crystallographic constitutive equation, the simulations of casting microcrack and micropore growth in three-dimensional unit cell model were carried out in a range of parameters including stress triaxiality, Lode parameter and type of activated slip systems. The FE results show that the stress triaxiality has profound effects on growth behavior, and the Lode parameter is also important for the casting microcrack and micropore growth. The type of operative slip systems has remarkable effect on casting microcrack and micropore growth, so the life of single- crystal component is associated with the type of activated slip systems, which is related to Schmid factor and the number of activated slip systems. The growth comparison between microcrack and micropore reveals that when the material is subjected to large deformation, the growth rate of microcrack is faster than that of micropore, i.e. microcrack is more dangerous than micropore; the microcrack is easier to result in brittle fracture than micropore. The stress triaxiality and Lode parameter have strong influence on the growth of microcrack and micropore.  相似文献   

6.
EBSD Investigation on Oriented Nucleation in IF Steels   总被引:1,自引:0,他引:1  
The mechanism responsible for the formation of recrystallization texture in cold-rolled Ti bearing interstitial free (IF) steel sheets was investigated using electron back-scatter diffraction (EBSD). In addition, the origin of nuclei with specific orientations was studied. The formation of recrystallization texture was explained by oriented nucleation. Most nuclei have a high misorientation angle of 25-55° with the surrounding deformed matrices, but no specific orientation of misorientation axis between the nucleus and the surrounding deformed matrix is observed. The stored energy of deformed grains is in the decreasing order of the {111}〈112〉,{111}〈110〉, {112}〈110〉 and {001}〈110〉 orientations. New {111}〈110〉 grains are nucleated within deformed {111}〈112〉 grains and new {111}〈112〉 grains originate in the deformed {111}〈110〉 grains.  相似文献   

7.
Texture evolution in nickel, copper and α-brass that are representative of face-centered-cubic (fcc) materials with different stacking fault energy (SFE) during cold rolling was systematically investigated. X-ray diffraction, scanning electron microscopy and electron backscatter diffraction techniques were employed to characterize microstructures and local orientation distributions of specimens at different thickness reductions. Besides, Taylor and Schmid factors of the {111} 〈110〉 slip systems and {111} 〈112〉 twin systems for some typical orientations were utilized to explore the relationship between texture evolution and deformation microstructures. It was found that in fcc metals with low SFE at large deformations, the copper-oriented grains rotated around the 〈110〉 crystallographic axis through the brass-R orientation to the Goss orientation, and finally toward the brass orientation. The initiation of shear banding was the dominant mechanism for the above-mentioned texture transition.  相似文献   

8.
Cylindrical Al-Zn-Mg alloys were processed by electroplastic compression with forced air cooling.Compared to a simple compression process,an unequal intensity of {110} <111> was obtained,and other textures were eliminated by electroplastic compression,that is,electroplastic compression can promote a uniform texture.The various textures formed in different regions along the radial direction under a simple compression process were illuminated by analyzing the relationship between the crystal rotation and stress state.Furthermore,the interaction between the electrons and dislocations was studied in electroplastic compression.The electrons enhanced {110} <111> by promoting slipping of the dislocations when the Burgers vectors of the dislocations were parallel to the drift direction of the electrons.However,the electrons also inhibited crystal rotation by pinning the dislocations with the Burgers vectors perpendicular to the drift direction of the electrons.Therefore,textures other than {110} <111>have difficulty forming under electroplastic compression.The effect of the current energy on the texture(enhancement or attenuation) was in accordance with the law of conservation.The results provided reasonable explanations for the test phenomena.  相似文献   

9.
The undesired {111} texture component for the magnetic properties mainly exists in the sheets of electrical steels by the conventional process, whereas the sheets with the non-{111} texture can be obtained by α→γ→α transformation. In this paper, we mainly investigate the opposite relationship between orientation selection and texture memory in the deformed ultra-low carbon steel sheet during →→ transformation annealing. A 0.5 mm thick hot-rolled sheet is directly subjected to transformation. The result shows that the specific transformation textures are not possible to generate in the sheets without deformation. Besides, transformation annealing is conducted on the recrystallized sheets in hydrogen and vacuum, respectively. The near {100} and {110} grains have the growth advantage at the atmosphere/metal interface, and the initial ferrite textures are retained in vacuum. Cold-rolled sheets with different thicknesses are annealed for transformation in vacuum, hydrogen and nitrogen, respectively.The near {100} and {110} textures are still the preferential orientations at the atmosphere/metal interface. When the surface grains have sufficiently large growth advantage, the {111} grains developed by texture memory effect will be annexed. Otherwise, the {111} grains at the center layer of the sheets are hard to be replaced, and they are retained after α→γ→α transformation cycle. The results of deformed sheets annealed with different heating rates in hydrogen show that the growth of initial recrystallization grains has a great effect on variant selection.  相似文献   

10.
Recently,the eutectic high-entropy alloy(EHEA),AlCoCrFeNi2.1,can reach a good balance of strength and ductility.The dual-phase alloy exhibits a eutectic lamellar microstructure with large numbers of interfaces.However,the role of the interfaces in plastic deformation have not been revealed deeply.In the present work,the orientation relationship(OR)of the interfaces has been clarified as the Kurdjumov-Sachs(KS)interfaces presenting〈111〉B2 〈110〉FCCand {110} B2{111}FCC independent of their morphologies.There exist three kinds of interfaces in the EHEA,namely,The dominating interface and the secondary interface are both non-slip planes and atomistic-scale faceted,facilitating the nucleation and slip transmission of the dislocations.The formation mechanism of the preferred interfaces is revealed using the atomistic geometrical analysis according to the criteria of the low interfacial energy based on the coincidence-site lattice(CSL)theory.In particular,the ductility of the dual-phase alloy originates from the KS interface-induced slip continuity across interfaces,which provides a high slip-transfer geometric factor.Moreover,the strengthening effect can be attributed to the interface resistance for the dislocation transmission due to the mismatches of the moduli and lattice parameters at the interfaces.  相似文献   

11.
By sliding a 0.25 mm radius ruby sphere on a (111) MnZn ferrite crystal, grooves have been made at speeds from 4 to 400 μm sec?1, at loads from 0.5 to 4 N and after 1 to 1000 passes. The deformation is observed by microscopy and profilometry. For a single pass slip lines are observed in all directions of sliding, above a load that increases with sliding speed. Slip-line patterns are identified as due to {100}<011> slip, coupled to {111}<011> slip, as in earlier work on pencil patterns in indentations. At higher speeds of sliding the number of {100} lines decreases due to lack of nucleation of dislocations. The cross-slip to {111}, in general, shows an even stronger speed dependence. The number of slip lines at a given load and speed depends on the direction of sliding. Along <011> the density is largest. Along the density and the groove depth change when the direction is reversed. The angular variation is not determined by the (small) variations of the resolved shear stress, but by the necessity of repeated nucleation of slip. Curved slip lines are observed in several directions of sliding. The curvature is attributed to multiple cross-slip, from {111} back to {100}. Powder-like debris is formed during sliding by fracture of the slip steps. The powder is then transported to the sides of the groove by repeated sliding.  相似文献   

12.
The subject of this work is focused on characterization of the microstructures and orientations of SiC crystals synthesized in diamond–SiC–Si composites using reactive microwave sintering. The SiC crystals grown on the surfaces of diamonds have either shapes of cubes or hexagonal prisms, dependent on crystallographic orientation of diamond. The selection of a specified plane in diamond lattice for the TEM investigations enabled a direct comparison of SiC orientations against two types of diamond facets. On the {111} diamond faces a 200 nm layer of 30–80 nm flat β-SiC grains was found having a semi-coherent interface with diamond at an orientation: (111)[112]SiC║(111)[110]C. On the {100} diamond faces β-SiC forms a 300 nm intermediate layer of 20–80 nm grains and an outer 1.2 µm layer on top of it. Surprisingly, the SiC lattice of the outer layer is aligned with the diamond lattice: (111)[110]SiC║(111)[110]C.  相似文献   

13.
借助电子背散射衍射(EBSD)技术测量和计算了高强IF钢退火试样的取向分布函数(ODF)、织构组分的含量和7取向线强度。研究了{111}(112)和{111}010)织构组分的变化,分析了P、Ti对{111}面织构的影响机理。P的存在阻碍了位错的运动和晶界的迁移,进而使再结晶晶粒取向趋于一致,形成较尖锐的{111}面织...  相似文献   

14.
Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing, as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used. A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for {100} and {111} samples respectively was observed.  相似文献   

15.
The ω phase is commonly observed in β-Ti alloys and plays a significant role on various properties of β-Ti alloys.Although many results about the role ofω phase on mechanical properties of β-Ti alloys have been derived from theoretical and experimental studies,the role ofω phase on deformation mechanism hitherto remains elusive and deserves to be further studied.In this work,the role played by ω phase during the {112 } <111>β twinning in Ti-Mo alloys were investigated by first-principles calculations at atomic scale.In the energy favorable interface of(112)β/(10(1)0)ω,we found that partial dislocations slipping on the successive (10(1)0)ω planes ofω phase can lead to the formation of { 112} <111>β twin nucleus.And the twin nucleus grows inwards ω grain interior through atomic shuffle.Thus,a new twinning mechanism of {112 } <111>β assisted by ω phase was proposed.Furthermore,our calculations indicated that the Pearance of ITB (interfacial twin boundary) ω phase can improve the stability of the symmetrical 12 } <111 >β twin boundary (TB),which can well explain the experimental phenomenon that the ITB ω phase always accompanies the formation of {112 } <111>β twin.Finally,a probable microstructure evolution sequence was suggested,namely β matrix → β matrix + athermal ω phase → (112)[11(1)]twin → (112)[11(1)]β twin + ITB ω phase.Our calculations provide new insights on the role played by ω phase during the twinning process of {112} <111>β,which can deepen the understanding on the deformation behaviors of β-Ti alloys.  相似文献   

16.
本文采用 Taylor 模型,在假设临界滑移系开动几率均等和各滑移系作用简单叠加等条件下,模拟计算了{110}〈111〉,{112}〈111〉,{123}〈111〉滑移系开动时体心立方金属多晶冷轧织构,并与实测体心立方金属多晶冷轧织构取得了较好的一致。  相似文献   

17.
Enhancement of toughness is currently a critical engineering issue in tungsten metallurgy. The inherent toughness of tungsten single crystals is closely related to the capacity for local plastic slip. In this study we have investigated the plastic behavior of tungsten single crystals by means of micro-indentation experiments performed on specimens exposing (100), (110), and (111) surfaces. In parallel, FEM simulations were carried out with the Peirce–Asaro–Needleman crystal plasticity model considering both {110} 〈111〉 and {112} 〈111〉 slip systems. Plastic material parameters were identified by comparing the measured and predicted load–displacement curves as well as pile-up profiles. It is found that both measured and simulated plastic pile-up patterns on the indented surfaces exhibit significant anisotropy and orientation dependence, although the measured and simulated load–displacement curves manifest no such orientation dependence. The height and extension of pile-ups differ strongly as a function of surface orientation. The FEM simulations are able to reproduce the observed features of spherical indentation both qualitatively and quantitatively.  相似文献   

18.
ABSTRACT This paper describes a slip system model developed for the analysis of modern single crystal superalloys – specifically, the first generation alloys RR2000 and SRR99, and the second generation alloy CMSX‐4. The single crystal model is implemented as an ABAQUS User MATerial (UMAT) subroutine, the framework is based on the classical theory of single crystal plasticity. The constitutive equations used have different formulations based on the micromechanisms of deformation and experimental measurements. The emphasis is on the effect of incorporating the micromechanisms of material behaviour on predicted macroscopic results. Several important phenomena and mechanisms, which are required for explaining creep properties as a function of stress, temperature and orientation are identified and included in the model. These include: activation of < 101 > {111} and < 112 > {111} slip systems, rigid body rotation, continuum damage, slip system softening, dislocation interaction, threshold behaviour and rafting. Model simulations are compared with experimental data in various deformation regimes. In a later part of the paper, the model is used to analyse the performance of a single crystal turbine blade. This enables the effect of the micromechanisms of deformation on overall component behaviour to be quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号