首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain the compatible material of high hardness and high toughness, Hadfield steel matrix composites, reinforced by high-Cr cast iron bars made of flux-cored welding wires, which were inserted into the Hadfield steel melt, were investigated. The mechanical properties of three materials, i e, composites for as-cast and quenching-water condition, as well as Hadfield steel, were compared. The results show that the alloy powder inside flux-cored welding wires can be melted by the heat capacity of Hadfield steel melt and solidify into high-Cr cast iron bars. The impact toughness of the composite for quenching-water condition is higher than that of the composite for as-cast condition and is lower than that of the Hadfield steel, but it can still meet the requirements of hardness and toughness in industrial application. Regardless of load variation, composite for quenching-water condition shows better wear resistance than those of the composite for as-cast condition and Hadfield steel. The modified fracture toughness and wear resistance of composites are attributed to not only the combining actions of Hadfield steel matrix and high-Cr cast iron bars, but also the effect of heat treatment.  相似文献   

2.
采用小能量示波冲击法和金相法,研究了10Cr9Mo1VNb钢冲击断裂时裂纹的萌生、生长与扩展.结果表明:10CrgMo1VNb钢裂纹生长机理是裂纹前沿和孔洞之间以颈缩聚合的方式相连,裂纹生长速率缓慢;裂纹扩展其机理是裂纹前沿和孔洞之间以剪切裂纹的方式相连,裂纹扩展速率很快.裂纹的临界破断为尺寸2mm左右,临界冲击功为114J左右。  相似文献   

3.
The effect ofrare earth(Re)and titanium(Ti)multi-modification on the impact wear behavior of Mn-B high-Si bainitic cast steel was investigated systematically.The experiments show that the impact wear resistance can be improved greatly with the addition of Re and Ti.Its wear loss is only about 1/3-1/2 as large as that of the unmodified bainitic cast steel.By the Re/Ti modification,coarse dendrite grains and bainitic/martensite duplex structure have been refined effectively,and the impact toughness ofthe bainitic cast steel is nearly tripled(10mm×10 mm×55 mm with unnotched sample).Consequently,the modified bauutic cast steel possesses good wear resistance under high impact.For both modified and unmodified bainitic cast steels,high hardness white layer and deformed zone are developed beneath the worn surface under the lugh impact wear,but the formation and propagation of cracks are different for these bainitic casting steels.Different models for the formation and propagation of cracks for both modified and unmodified bairutic cast steels under high impact wear are proposed.  相似文献   

4.
对以激光熔覆方式在45钢基体上制备的FeNiSiBVRE非晶涂层进行激光晶化,制备非晶/纳米晶复合涂层.利用X射线衍射仪、透射电镜、扫描电镜和磨损试验机研究非晶/纳米晶复合涂层的组织与性能.研究结果表明,涂层存在着分层结构,组成相有晶化相、非晶相和纳米晶相;涂层底部和顶部的显微组织由大量的稀土树枝晶、板条状硼化物和粒状碳化物组成,涂层中部的显微组织是由大量的纳米晶相镶嵌在非晶基体上构成.与没有进行激光晶化的非晶涂层相比,涂层的耐磨损性能下降.其磨损机制以粘着磨损和剥层磨损为主.  相似文献   

5.
用MA技术制备了C体积分数为10%的Cu-C固溶体粉体,用溶胶-凝胶(sol-gel)烧结技术制备了平均尺寸为12 nm的γ-Al2O3颗粒和用SPS方法制备了纳米Al2O3颗粒增强Cu-C固溶体基复合材料。采用X射线衍射仪对MA粉体、干凝胶和煅烧粉体进行了物相分析;通过JSM-5500LV型扫描电镜对磨损表面形貌进行观察分析并分析其磨损机制;使用MG-2000型高温摩擦磨损试验机对制备的复合材料进行了干摩擦实验并测定其磨损量。结果表明:纳米氧化铝颗粒体积分数及磨损载荷对复合材料摩擦磨损特性有显著影响,纳米氧化铝的体积分数从0%增加到2%,Cu基复合材料的磨损量从6.2 mg降到2.1 mg。  相似文献   

6.
首次获得了具有粒状碳化物的莱氏体型铸造模具钢,解决了Cr12类钢精密成型模具强韧性低的问题。试验结果表明:该新型铸造模具钢基体组织是以位错马氏体为主,含少量李晶马氏体和残留奥氏体;其碳化物形态不同于传统莱氏体型铸造模具钢的网状碳化物,在不同截面尺寸下均呈粒状均匀分布;在硬度为HRC60~62时,其冲击韧性明显高于传统莱氏体型铸造模具钢,已达到锻造Cr12类钢的下限值;其断裂韧性和疲劳裂纹扩展抗力明显高于传统莱氏体型铸钢和锻造Cr12类钢;具有高的耐磨性。并进行了现场应用试验。  相似文献   

7.
本文研究了一件铸态锰钢,其初始硬度高,加工硬化能力强,因而在非强烈冲击的工况下,较高锰钢的耐磨性有明显提高。  相似文献   

8.
UHPC的轴拉性能与裂缝宽度控制能力研究   总被引:6,自引:4,他引:2  
为研究3种类型超高性能混凝土(ultra-high performance concrete,简称UHPC)的轴拉应力-应变曲线及其裂缝宽度控制能力,包括高应变强化UHPC、低应变强化UHPC和应变软化UHPC.采用轴拉试验方法测试狗骨头形试件,得到UHPC的轴拉应力-应变曲线和缝宽-应变曲线.试验结果表明:高应变强化UHPC和低应变强化UHPC的轴拉应力-应变曲线均包括弹性段、应变强化段和应变软化段,应变软化UHPC只有弹性段和应变软化段;UHPC应变强化段和应变软化段的转折点是裂缝缓慢扩展和迅速扩展的临界点;提高UHPC的极限拉伸应变,即延长其应变强化段,有助于提高其裂缝宽度控制能力;高应变强化UHPC拉伸应变在0.42%之前,其裂缝宽度均小于0.05 mm.对比C50混凝土(极限应变、极限强度分别为0.012%、2.3 MPa),高应变强化UHPC优异的裂缝宽度控制能力避免了结构设计中受正常使用状态裂缝宽度验算限制的影响,同时可在钢筋屈服前与其全程协同工作,这使得钢筋增强高应变强化UHPC在某些需要对裂缝宽度进行严格控制的结构类型中具有很高的应用价值.  相似文献   

9.
High temperature wear characteristics of a new hot work die steel CH95 doped with a small amount of rare earth ( Re ) and boron ( B ) have been investigated and compared with those of conventional die steel H11 at a series of temperatures and loads. Worn surfaces of CH95 steel and H11 steel were analyzed with a scanning electron microscope. It is found that high temperature mechanical properties of CH95 steel are much better than those of H11 steel. The oxide layer formed on the worn surface plays an important role in wear resistance at high temperature. When the load is less than 63 N, the surface oxide layer keeps integrated and the effect of load on high temperature wear is small. When the load is higher than 63 N, the supporting ability of matrix to the oxide layer decreases with the increase of load, which results in an increase of wear rate. Compared with H11 steel, the wear resistance of CH95 steel is much better and the worn surface of CH95 steel is smoother. It is easier for CH95 steel to form a compact and integrated surface oxide layer at high temperature than for Hll steel, which protects the worn surface and reduces wear.  相似文献   

10.
研究了加入不同含量的微细铬铁粉对烧结钢干摩擦磨损性能的影响,并借助于扫描电镜观察分析其磨损形貌,探讨摩擦磨损机制。研究结果表明:添加微细铬铁粉可改善烧结钢的强度、硬度和摩擦磨损性能,铬的质量分数为1.5%时,耐磨性最佳。磨损造成一定厚度的塑性变形,硬度较高的材料塑性变形层较薄。磨损早期,磨粒磨损是主导机制,磨损后期,由于塑性变形导致亚表层产生裂纹,进而发生的剥层磨损是主导磨损机制。  相似文献   

11.
Binderless nanotwinned cubic boron nitride (nt-cBN) synthesized from onion-structured BN precursors under high pressure and high temperature shows a very fine microstructure consisting of densely lamellar nanotwins (average thickness of 4 nm) within nanograins. The unique nanotwinned microstructure offers high hardness, wear resistance, fracture toughness, and thermal stability which are essential for advanced cBN tool materials. Thus, a circular micro tool of nt-cBN was fabricated using femtosecond laser contour machining followed by focused ion beam precision milling. Thereafter turning tests were performed on hardened steel using the studied micro tool. To evaluate the cutting performance, the machined surface quality and subsurface damage of the hardened steel were characterized. The wear mechanism of the nt-cBN micro tool was also investigated. It is found that the fabricated nt-cBN micro tool can generate high quality surface with surface roughness less than 7 nm and nanograin subsurface of about 500 nm deep. In addition, abrasive wear is found to be the dominant wear mechanism of the nt-cBN micro tool in turning hardened steel. These results indicate that nt-cBN has outstanding potential for ultra-precision cutting hardened steel.  相似文献   

12.
研究了镍基高温合金GH169的疲劳,疲劳蠕变复合作用下裂纹萌生、扩展的微观动态物理过程,结果表明,高温疲劳裂纹在滑移带与晶界相交处萌生,以晶内驻留滑移带处微裂纹连接方式扩展。疲劳蠕变复合作用下裂纹在垂直于应力轴方向的晶界处萌生,以晶界滑动方式扩展。疲劳蠕变复合作用使裂纹扩展方式由切变型转变为止应变型。晶粒大小对疲劳/蠕变复合作用下材料断裂寿命的影响远大于第二相的作用。晶粒越小,其断裂寿命越长。  相似文献   

13.
根据吊索镀锌钢丝腐蚀疲劳破坏特点,把镀锌钢丝腐蚀疲劳纹形成和扩展过程分解成镀锌层腐蚀失效、蚀坑萌生、蚀坑形成、短裂纹扩展、长裂纹扩展和断裂破坏等阶段,建立各阶段时间表达式,得到镀锌钢丝疲劳寿命表达式,提出基于断裂力学的吊索钢丝腐蚀疲劳寿命评估研究结果方法。通过算例分析复杂运营条件下腐蚀环境和应力幅等因素对吊索钢丝腐蚀疲劳寿命的影响,研究结果表明:吊索钢丝腐蚀疲劳寿命主要由钢丝镀锌层腐蚀、蚀坑发展和短裂纹扩展等3个阶段组成,为了准确地评估吊索腐蚀疲劳寿命,需要掌握大桥的运营环境和交通荷载。  相似文献   

14.
高速镦粗45钢圆柱体内部裂纹扩展的动态响应分析   总被引:3,自引:0,他引:3  
采用人工预制裂纹方法分析了45钢高速冲击下裂纹扩的动态响应行为,由弹塑性波理论可以很好的解释钢体断裂机理,并预测裂纹扩展过程。结果表明,快速镦粗过程预制内部裂纹具有稳定扩展特征,塑性等效应变速率εp较恒定。  相似文献   

15.
双相钢Q345多用于建筑或机械结构的承力构件,循环载荷的长期作用使得构件在低于其静强度的载荷条件下发生疲劳断裂,经济可靠的强度设计需要对材料的疲劳失效进行研究。作者利用电磁谐振高频疲劳试验机,在载荷频率140 Hz、应力比为-1条件下,得到不同失效概率时材料高周疲劳(104周次< 疲劳寿命< 107周次)应力-寿命(S-N)曲线。利用扫描电子显微镜观察材料受到循环载荷作用后的显微结构的变化和疲劳失效后试样的断面微观形貌,研究材料疲劳裂纹的萌生和扩展。同时,利用红外热像仪记录Q345试样表面的温度场随循环载荷作用周次的变化,研究材料在高频循环载荷作用下的固有耗散能。双相钢Q345在高频循环载荷作用下的疲劳失效主要是由于铁素体-珠光体双相结构在循环载荷作用下的微观强度差异使得微观裂纹首先萌生于相对薄弱的铁素体晶粒,且随循环载荷周次的增加而裂纹逐渐扩展。珠光体晶粒对疲劳裂纹的扩展起阻碍作用,使得疲劳裂纹沿铁素体或铁素体与珠光体之间的晶界向前扩展。当载荷幅值低于其高周疲劳极限时,试样表面温升不明显;有限寿命的载荷条件下,试样表面温度场的变化受到材料微观变形的影响,基于试样表面温度场的变化,能快速确定材料的高周疲劳强度极限。高频循环载荷作用下,单位体积材料的固有耗散能与载荷之间呈非线性关系,在热力学框架内建立了材料的固有耗散能表征模型。  相似文献   

16.
A theoretical model of relationship between subsurface damage and surface roughness was established to realize rapid and non-destructive measurement of subsurface damage of ground optical materials.Postulated condition of the model was that subsurface damage depth and peak-to-valley surface roughness are equal to depth of radial and lateral cracks in brittle surface induced by small-radius(radius≤200 μm)spherical indenter,respectively.And contribution of elastic stress field to the radial cracks propagation was also considered in the loading cycle.Subsurface damage depth of ground BK7 glasses was measured by magnetorheological finishing spot technique to validate theoretical ratio of subsurface damage to surface roughness.The results show that the ratio is directly proportional to load of abrasive grains and hardness of optical materials,while inversely proportional to granularity of abrasive grains and fracture toughness of optical materials.Moreover,the influence of the load and fracture toughness on the ratio is more significant than the granularity and hardness,respectively.The measured ratios of 80 grit and 120 grit fixed abrasive grinding of BK7 glasses are 5.8 and 5.4,respectively.  相似文献   

17.
复合型裂纹扩展的形状改变比能准则   总被引:4,自引:1,他引:4  
为了预测金属材料裂纹在小范围屈服时的延性断裂,以复合型裂纹为研究对象,将裂纹前缘塑性屈服区内的总形状改变比能用于建立复合型裂纹的断裂准则。该准则表明了金属材料裂纹在扩展过程中,起决定作用的是形状改变比能,而不是整个应变能。能成功地预测了复合型裂纹的启裂角度以及临界荷载,将其结果与Sih的S准则和实验数据结果进行了比较。结果表明,复合型裂纹扩展的形状改变比能准则,在预测裂纹启裂角方面优于S准则,并且预测的临界荷载偏保守。在工程上,将其应用于复合型裂纹断裂判定是安全的。  相似文献   

18.
The effects of subsurface hardness on wear-resistance of martensitic steel 20Cr, 40CrSi, 60Mn, T8 and T10 in three-body abrasion under static load was investigated. It shows that the characteristic of the subsurface hardness distribution and the abrasive wear resistance is related to the substructure near the worn surface. The substructure of the tested martensite steel has an apparent relationship with the carbon content and steels with moderate carbon content and hardness exhibit good resistance to abrasive wear. The competition of the work-hardening effect and the temper softening effect, which resulted from deformation and friction heat generating during abrasive wear is considered to be a main reason for the relation among wear-resistance, hardness and substructure. At the test conditions, the wear-resistance of 40CrSi is the best.  相似文献   

19.
A new hot-rolled low alloy high strength steel with grain boundary allotriomorphic ferrite/granular bainite duplex micro-structure has been developed through novel microstructure and alloying designs without any noble metal elements such as nickel and molybdenum. Its as-rolled microstructure and mechanical properties, fatigue crack propagation behavior compared with single granular bainitic steel as well as continuous cooling transformation, were investigated in detail. The measured result of CCT (continuous cooling transformation) curve shows that such duplex microstructure can be easily obtained within a wide air-cooling rate range. More importantly, this duplex microstructure has much better combination of toughness and strength than the single granular bainite microstructure. It is found that the grain boundary allotriomorphic ferrite in this duplex microstructure can blunt the rni-crocrack tip, cause fatigue crack propagation route branching and curving, and thus it increases the resistance to fati  相似文献   

20.
We studied the dynamic fracture mechanical behavior of rock under different impact rates. The fracture experiment was a three-point bending beam subjected to different impact loads monitored using the reflected caustics method. The mechanical parameters for fracture of the three-point bending beam specimen under impact load are analyzed. The mechanism of crack propagation is discussed. Experimental results show that the dynamic stress intensity factor increases before crack initiation. When the dynamic stress intensity factor reaches its maximum value the crack starts to develop. After crack initiation the dynamic stress intensity factor decreases rapidly and oscillates. As the impact rate increases the cracks initiate earlier, the maximum value of crack growth velocity becomes smaller and the values of dynamic stress intensity factor also vary less during crack propagation. The results provide a theoretical basis for the study of rock dynamic fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号