首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LiNi1/3Co1/3Mn1/3O2 and LiCoO2 cathode materials were synthesized by using a supercritical water (SCW) method with a metal salt solution in a batch reactor. Stoichiometric LiNi1/3Co1/3Mn1/3O2 was successfully synthesized in a 10-min reaction without calcination, while overlithiated LiCoO2 (Li1.15CoO2) was synthesized using the batch SCW method. The physical properties and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 were compared to those of Li1.15CoO2 by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests. The XRD pattern of LiNi1/3Co1/3Mn1/3O2 was found to be similar to that of Li1.15CoO2, showing clear splitting of the (0 0 6)/(1 0 2) and (1 0 8)/(1 1 0) peak pairs as particular characteristics of the layered structure. In addition, both cathode powders showed good crystallinity and phase purity, even though a short reaction time without calcination was applied to the SCW method. The initial specific discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders at a current density of 0.24 mA/cm2 in 2.5-4.5 V were 149 and 180 mAh/g, and their irreversible capacity loss was 20 and 17 mAh/g, respectively. The discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders decreased with cycling and remained at 108 and 154 mAh/g after 30 cycles, which are 79% and 89% of the initial capacities. Compared to the overlithiated LiCoO2 cathode powders, the LiNi1/3Co1/3Mn1/3O2 cathode powders synthesized by SCW method had better electrochemical performances.  相似文献   

2.
Zn2SnO4 anode powders were successfully synthesized using supercritical water (SCW) and metal salt solutions with 10 min reaction time. Effect of NaOH concentration, Zn to Sn ratio, and synthesis temperature were studied with a SCW batch reactor. X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests were employed to characterize the physical properties and electrochemical performance of the as-prepared samples. Alkaline solution concentration and synthesis temperature played a key role in the production of single-phase Zn2SnO4 powders. At a solution concentration of 0.3 M NaOH and a molar ratio of Zn:Sn = 2:1 at 400 °C and 30 MPa, the average size range of the pure Zn2SnO4 powders was 0.5-1.0 μm, and the morphology was nearly uniform and cubic-like in shape. The initial specific discharge capacity of the Zn2SnO4 powders prepared at this condition was 1526 mAh/g at a current density of 0.75 mA/cm2 in 0.05-3.0 V, and their irreversible capacity loss was 433 mAh/g. The discharge capacities of the Zn2SnO4 powders decreased with cycling and remained at 856 mAh/g after 50 cycles, which was 56% of the initial capacity.  相似文献   

3.
C. Deng  L. Liu  K. Sun  D. Sun 《Electrochimica acta》2008,53(5):2441-2447
The layered Li[Ni1/3Co1/3Mn1/3]O2 powder with good crystalline and spherical shape was prepared by hydroxide co-precipitation method. The effects of pH value, NH4OH amount, calcination temperature and extra Li amount on the morphology, structure and electrochemical properties of the cathode material were investigated in detail. SEM results indicate that pH value affected both the morphology and the property of the cathode material, and the highest discharge capacity in the first cycle of 163 mAh g−1 (2.8-4.3 V) was obtained at pH value was 12. On the contrary, the NH4OH amount, which was used as a chelating agent, only affected the particle size distribution of the material. The calcination temperatures caused great difference in the structure and property of layered Li[Ni1/3Co1/3Mn1/3]O2, and the best electrochemical properties were obtained at the calcination temperature of 800 °C. Extra Li amount not only caused difference in the material structure, but also affected their electrochemical properties. With increasing Li amount, the lattice parameters (a and c) increased monotonously, and the highest first cycle coulombic efficiency (the ratio of discharge capacity to charge capacity in the first cycle) was obtained with the Li/M of 1.10. Therefore, the optimum synthetic conditions for the hydroxide co-precipitation reaction were: pH value was 12, NH4OH amount was 0.36 mol L−1, calcination temperature was 800 °C and the Li/M molar ratio was 1.10.  相似文献   

4.
N Sharma 《Electrochimica acta》2004,49(7):1035-1043
The electrochemical performance of mixed oxides, Ca2Fe2O5 and Ca2Co2O5 for use in Li-ion batteries was studied with Li as the counter electrode. The compounds were prepared and characterized by X-ray diffraction and SEM. Ca2Fe2O5 showed a reversible capacity of 226 mAh/g at the 14th cycle and retained 183 mAh/g at the end of 50 cycles at 60 mA/g in the voltage window 0.005-2.5 V. A reversible capacity in the range, 365-380 mAh/g, which is stable up to 50 charge-discharge cycles is exhibited by Ca2Co2O5 in the voltage window, 0.005-3.0 V and at 60 mA/g. This corresponds to recycleable moles of Li of 3.9±0.1 (theoretical: 4.0). Significant improvement in the cycling performance and attainable reversible capacity were noted for Ca2Co2O5 on cycling to an upper cut-off voltage of 3.0 V as compared to 2.5 V. Coulombic efficiency for both compounds is >98%. Electrochemical impedance spectroscopy (EIS) data clearly indicate the reversible formation/decomposition of polymeric surface film on the electrode surface of Ca2Co2O5 in the voltage window, 0.005-3.0 V. Cyclic voltammetry results compliment the galvanostatic cycling data.  相似文献   

5.
Spherical spinel LiMn2O4 particles were successfully synthesized from a mixture of manganese compounds containing commercial manganese carbonate by sintering of the spray-dried precursor. Different preparation routes were investigated to improve the tap density and to enhance the electrochemical performance of LiMn2O4. The structure and morphology of the LiMn2O4 particles were confirmed by X-ray diffraction (XRD) and scanning electron microscopy. The results showed that hollow spherical LiMn2O4 particles could be obtained when only commercial MnCO3 was used as the manganese source. These particles had a low tap density (ca.0.8 g/cm3). Perfect micron-sized spherical LiMn2O4 particles with good electrochemical performance were obtained by spray-drying a slurry composed of MnCO3, Mn(CH3CHOO)2 and LiOH, followed by a dynamic sintering process and a stationary sintering process. The as-prepared spherical LiMn2O4 particles comprised hundreds of nanosize crystal grains and had a high tap density(ca. 1.4 g/cm3). The galvanostatic charge-discharge measurements indicated that the spherical LiMn2O4 particles had an initial capacity of 121 mAh/g between 3.0 and 4.2 V at 0.2 C rate and still delivered a reversible capacity of 112 mAh/g at 2 C rate. The retention of capacity after 50 cycles was still 96% of its initial capacity at 0.2 C. All the results showed that the as-prepared spherical LiMn2O4 particles had an excellent electrochemical performances. The methods we used for preparing spherical LiMn2O4 are energy-saving and suitable for industrial application.  相似文献   

6.
A liquid-based sol-gel method was developed to synthesize nanocarbon-coated Li3V2(PO4)3. The products were characterized by XRD, SEM and electrochemical measurements. The results of Rietveld refinement analysis indicate that single-phase Li3V2(PO4)3 with monoclinic structure can be obtained in our experimental process. The discharge capacity of carbon-coated Li3V2(PO4)3 was 152.6 mAh/g at the 50th cycle under 1C rate, with 95.4% retention rate of initial capacity. A high discharge capacity of 184.1 mAh/g can be obtained under 0.12C rate, and a capacity of 140.0 mAh/g can still be held at 3C rate. The cyclic voltammetric measurements indicate that the electrode reaction reversibility is enhanced due to the carbon-coating. SEM images show that the reduced particle size and well-dispersed carbon-coating can be responsible for the good electrochemical performance obtained in our experiments.  相似文献   

7.
Spherical LiMn2O4 particles were successfully synthesized by dynamically sintering spherical precursor powders, which were prepared by a slurry spray-drying method. The effect of the sintering process on the morphology of LiMn2O4 was studied. It was found that a one-step static sintering process combined with a spray-drying method could not be adopted to prepare spherical products. A two-step sintering procedure consisting of completely decomposing sprayed precursors at low temperature and further sintering at elevated temperature facilitated spherical particle formation. The dynamic sintering program enhanced the effect of the two-step sintering process in the formation of spherical LiMn2O4 powders. The LiMn2O4 powders prepared by the dynamic sintering process, after initially decomposing the spherical spray-dried precursor at 180 °C for 5 h and then sintering it at 700 °C for 8 h, were spherical and pure spinel. The as-prepared spherical material had a high tap density (ca. 1.6 g/cm3). Its specific capacity was about 117 mAh/g between 3.0 and 4.2 V at a rate of 0.2 C. The retention of capacity for this product was about 95% over 50 cycles. The rate capability test indicated that the retention of the discharge capacity at 4C rate was still 95.5% of its 0.2 rate capacity. All the results showed that the spherical LiMn2O4 product made by the dynamic sintering process had a good performance for lithium ion batteries. This novel method combining a dynamic sintering system and a spray-drying process is an effective synthesis method for the spherical cathode material in lithium ion batteries.  相似文献   

8.
Ke Wang 《Electrochimica acta》2009,54(10):2861-2907
LiFePO4/C composite was synthesized by mechanical activation using sucrose as carbon source. High-energy ball milling facilitated phase formation during thermal treatment. TG-DSC and TPR experiments demonstrated sucrose was converted to CHx intermediate before completely decomposed to carbon. Ball milling time, calcination temperature and dwelling time all had significant impact on the discharge capacity and rate performance of the resulted power. The optimal process parameters are high-energy ball milling for 2-4 h followed by thermal treatment at 700 °C for 20 h. The product showed a capacity of 174 mAh/g at 0.1C rate and around 117 mAh/g at 20C rate with the capacity fade less than 10% after 50 cycles. Too low calcination temperature or insufficient calcination time, however, could result in the residual of CHx in the electrode and led to a decrease of electrode performance.  相似文献   

9.
Porous (P-) and dense (D-) lithium titanate (Li4Ti5O12) powders as an anode material for lithium-ion batteries have been synthesized by spray drying followed by solid-state calcination. Electrochemical testing results showed that the discharge capacities of P-Li4Ti5O12 are 144 mAh/g, 128 mAh/g and 73 mAh/g at the discharging rate of 2C, 5C and 20C, respectively (cut-off voltages: 0.5-2.5 V). The corresponding values for D-Li4Ti5O12 are 108 mAh/g, 25 mAh/g and 17 mAh/g. The higher capacity of the P-Li4Ti5O12 at high charge/discharge rates was attributed to the shorter transport path of Li ions and higher electronic conductivity in the P-Li4Ti5O12 as a result of its smaller primary particle size and higher surface area compared with those of the D-Li4Ti5O12.  相似文献   

10.
CaCu3Ti4O12 nano-sized powders were successfully prepared by sol-gel technique and calcination at 600-900 °C. The thermal decomposition process, phase structures and morphology of synthesized powders were characterized by IR, DSC-TG, XRD, TEM, respectively. It was found that the main weight-loss and decomposition of precursors occurred below 450 °C and the complex perovskite phase appeared when the calcination temperature was higher than 700 °C. Using above synthesized powders as starting materials, CCTO-based ceramics with excellent dielectric properties (?25 = 5.9 × 104, tan δ = 0.06 at 1.0 kHz) were prepared by sintering at 1125 °C. According to the results, a conduction mechanism was proposed to explain the origin of giant dielectric constant in CCTO system.  相似文献   

11.
In this study, the LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the contents of LiNi1/3Mn1/3Co1/3O2 in the mixed cathode increases, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability deteriorated. On the contrary, the rate capability of the cathode enhanced but the reversible specific capacity and cycleability deteriorated, according to increasing the contents of LiCoO2 in the mixed cathode. The cell of LiCoO2/LiNi1/3Mn1/3Co1/3O2 (50:50, wt.%) mixed cathode delivers a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell shows very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.  相似文献   

12.
LiFeBO3 cathode material has been synthesized successfully by solid-state reaction using Li2CO3, H3BO3 and FeC2O4·2H2O as starting materials. The crystal structure has been determined by the X-ray diffraction. Electrochemical tests show that an initial discharge capacity of about 125.8 mAh/g can be obtained at the discharge current density of 5 mA/g. When the discharge current density is increased to 50 mA/g, the specific capacity of 88.6 mAh/g can still be held. In order to further improve the electrochemical properties, the carbon-coated LiFeBO3, C-LiFeBO3, are also prepared. The amount of carbon coated on LiFeBO3 particles was determined to be around 5% by TG analysis. In comparison with the pure LiFeBO3, a higher discharge capacity, 158.3 mAh/g at 5 mA/g and 122.9 mAh/g at 50 mA/g, was obtained for C-LiFeBO3. Based on its low cost and reasonable electrochemical properties obtained in this work, LiFeBO3 may be an attractive cathode for lithium-ion batteries.  相似文献   

13.
G.Q. Liu  Qilu  W. Li 《Electrochimica acta》2005,50(9):1965-1968
Spinel compound LiNi0.5Mn1.5O4 was synthesized by a chemical wet method. Mn(NO3)2, Ni(NO3)2·6H2O, NH4HCO3 and LiOH·H2O were used as the starting materials. At first, Mn(NO3)2 and Ni(NO3)2·6H2O reacted with NH4HCO3 to produce a precursor, then the precursor reacted with LiOH·H2O to synthesize product LiNi0.5Mn1.5O4. The product showed a single spinel phase under appropriate calcination conditions, and exhibited a high voltage plateau at about 4.6-4.8 V in the charge/discharge process. The LiNi0.5Mn1.5O4 had a discharge specific capacity of 118 mAh/g at about 4.6 V and 126 mAh/g in total in the first cycle at a discharge current density of 2 mA/cm2. After 50 cycles, the total discharge capacity was above 118 mAh/g.  相似文献   

14.
S. Zhang  C. Deng  B.L. Fu  L. Ma 《Powder Technology》2010,198(3):373-400
A carbonate co-precipitation method was employed to prepare spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material. The precursor, [Ni1/3Co1/3Mn1/3]CO3, was prepared using ammonia as chelating agent under CO2 atmosphere. The spherical Li[Ni1/3Co1/3Mn1/3]O2 was prepared by mixing the precalcined [Ni1/3Co1/3Mn1/3]CO3 with LiOH followed by high temperature calcination. The preparation conditions such as ammonia concentration, co-precipitation temperature, calcination temperature and Li/[Ni1/3Co1/3Mn1/3] ratio were varied to optimize the physical and electrochemical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2. The structural, morphological, and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2 were characterized by XRD, SEM, and galvanostatic charge-discharge cycling. The optimized material has a spherical particle shape and a well ordered layered structure, and it also has an initial discharge capacity of 162.7 mAh g− 1 in a voltage range of 2.8-4.3 V and a capacity retention of 94.8% after a hundred cycles. The optimized ammonia concentration, co-precipitation temperature, calcination temperature, and Li/[Ni1/3Co1/3Mn1/3] ratio are 0.3 mol L− 1, 60 °C, 850 °C, and 1.10, respectively.  相似文献   

15.
The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2 V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1 A/g and 5 A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05 A/g.  相似文献   

16.
The molybdenum cluster compounds, LiYMo3O8 and Mn2Mo3O8 are prepared by the carbothermal reduction method and characterized by various techniques. The FT-IR at ambient temperature (RT), and Raman spectra at various temperatures (78-450 K) are reported for the first time and results are interpreted. Magnetic studies on Mn2Mo3O8 in the temperature range, 10-350 K confirm that it is ferrimagnetic, with TC = 39 K. Magnetic hysteresis and magnetization data at various fields and temperatures are presented. The Li-cyclability is investigated by galvanostatic cycling in the voltage range, 0.005-3.0 V vs. Li at 30 mA/g (0.08 C). LiYMo3O8 shows a total first-discharge capacity of 305 ±5 mAh/g whereas the first-charge capacity is only 180 mAh/g at RT. However, both values increased systematically with an increase in the cycle number and yielded a reversible capacity of 385 ±5 mAh/g at the end of 120th cycle. At 50 °C, the reversible capacity is 418 ±5 mAh/g at the 60th cycle. The coulombic efficiency ranges from 94% to 98%. The Li-cyclability behavior of Mn2Mo3O8 is entirely different from that of LiYMo3O8. The total first-discharge and charge capacities are 710 ± 5 and 565 ±5 mAh/g, but drastic capacity-fading occurs during cycling. The reversible capacity at the end of 50th cycle is only 205 ±5 mAh/g. Plausible reaction mechanisms are proposed and discussed based on the galavanostatic cycling, cyclic voltammetry, ex situ XRD, ex situ TEM and impedance spectral data.  相似文献   

17.
Iron antimony oxide (FeSbO4) with specific surface area (SSA) over 50 m2/g was synthesized mechanochemically by milling a mixture of iron oxy-hydroxide (FeOOH) and antimony pentoxide (Sb2O5) using a planetary ball mill at room temperature. The mechanochemical reaction proceeds with an increase in milling time and has been completed by 120 min. The prepared product powders are in the state of agglomerates consisted of fine particles of several dozen nanometers. This method has been extended to synthesis of FeSbO4-based materials with different Fe/Sb atomic ratios (1 ≤ Fe/Sb ≤ 4). The SSA value of these prepared samples is in the range of 50 to 65 m2/g.  相似文献   

18.
Lithium titanate (Li4Ti5O12) microsphere has been successfully synthesized by a hydrothermal method. X-ray diffraction (XRD) and scanning electron microscope (SEM) are used to characterize the structure and morphology of the prepared Li4Ti5O12 crystallites. The results show that the as-synthesized powders exhibit outstanding rate capacities and excellent cycling performance. The first discharge capacity at 0.1 C is 172.5 mAh g−1, which is close to the theoretical capacity of 175 mAh/g. After 50 cycles, the efficiency of the synthesized Li4Ti5O12 still retains up to 92.8% at 0.1 C and 95.2% at 0.5 C of its initial value, which present a promising applications as anode materials for lithium ion batteries in hybrid and plug-in hybrid electric vehicles.  相似文献   

19.
A SnO2 anode material undergoes severe capacity loss, which is mainly associated with cracking/crumbling of the material by the large volume change between the LixSn and Sn phases, and the intensive reactions with the electrolyte solution. However, AlPO4 nanoparticle coating showed drastically improved electrochemical properties with decreased surface cracks. The AlPO4-coated SnO2 exhibited a capacity of 781 mAh/g, approaching its theoretical capacity at the first cycle, with 44% capacity retention after 15 cycles between 2.5 and 0 V at a relatively high C rate of 105 mA/g. In contrast, the bare SnO2 showed an initial capacity of 680 mAh/g, with only 8% capacity retention after 15 cycles.  相似文献   

20.
Well-ordered high crystalline LiNi0.5Mn1.5O4 spinel has been readily synthesized by a molten salt method using a mixture of LiCl and LiOH salts. Synthetic variables on the synthesis of LiNi0.5Mn1.5O4, such as synthetic atmosphere, LiCl salt amount, synthetic temperature, and synthetic time, were intensively investigated. X-ray diffraction (XRD) patterns and scanning electron microscopic (SEM) images showed that LiNi0.5Mn1.5O4 synthesized at 900 and 950 °C have cubic spinel structure () with clear octahedral dimension. LiNi0.5Mn1.5O4 spinel phase began to decompose at around 1000 °C accompanied with structural and morphological degradation. LiNi0.5Mn1.5O4 powders synthesized at 900 °C for 3 h delivered an initial discharge capacity of 139 mAh/g with excellent capacity retention rate more than 99% after 50 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号