首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Preparation of core-shell particles consisting of polystyrene-poly(ethylene glycol) monomethacrylate (PS-PEGMA) core covered with polypyrrole (PPy) shell is described. The thickness of PPy shell, which strongly influences electrical properties of the films prepared from the particles, can be varied by changing pyrrole load, controlling the overall template surface area in the system and by influencing the pyrrole polymerization kinetics in the presence of different oxidants. The type of anions and PPy loading strongly influence the electrical conductivity. Typical value of the resistivity of thin film consisting of core-shell particles was 34 Ωm (PPy oxidized by FeCl3, shell thickness 3 nm). Current-voltage dependences of low conductivity samples (thin PPy shell layer) are characteristic of contact-limited currents. The conductivity of the particles changes with humidity, which can be utilized in humidity sensors.  相似文献   

2.
MnO2 embedded PPy nanocomposite (MnO2/PPy) thin film electrodes were electrochemically synthesized over polished graphite susbtrates. Growing PPy polymer chains provides large surface area template that enables MnO2 to form as nanoparticles embeded within polymer matrix. Co-deposition of MnO2 and PPy has a complimentary action in which porous PPy matrix provides high active surface area for the MnO2 nanoparticles and, on the other hand, MnO2 nanoparticles nucleated over polymer chains contribute to enhanced conductivity and stability of the nanocomposite material by interlinking the PPy polymer chains. The MnO2/PPy nanocomposite thin film electrodes show significant improvement in the redox performance as cyclic voltammetric studies have shown. Specific capacitance of the nanocomposite is remarkably high (∼620 F g−1) in comparision to its constituents MnO2 (∼225 F g−1) and PPy (∼250 F g−1). Photoelectron spectroscopy studies show that hydrated manganese oxide in the nanocomposite exists in the mixed Mn(II) to Mn(IV) oxidation states. Accordingly, chemical structures of MnO2 and PPy constituents in the nanocomposite are not influenced by the co-deposition process. The MnO2/PPy nanocomposite electrode material however shows significantly improved high specific capacitity, charge-discharge stability and the redox performance properties suitable for application in the high energy density supercapcitors.  相似文献   

3.
The multi-walled carbon nanotube (CNT)-embedded activated carbon nanofibers (ACNF/CNT) and activated carbon nanofibers (ACNF) were prepared by stabilizing and activating the non-woven web of polyacrilonitrile (PAN) or PAN/CNT prepared by electrospinning. Both ACNF and ACNF/CNT were partially aligned along the winding direction of the drum winder. The average diameter of ACNF was 330 nm, while that of ACNF/CNT was lowered to 230 nm with rough surface. This was attributed to the CNT-added polymer solution in the electrospinning process providing finer fibers by increasing the electrical conductivity compared with the CNT-free one. The specific surface area and electrical conductivity of ACNF were 984 m2/g and 0.42 S/cm, respectively, while those of ACNF/CNT were 1170 m2/g and 0.98 S/cm, respectively. PPy was coated on the electrospun ACNF/CNT (PPy/ACNF/CNT) by in situ chemical polymerization in order to improve the electrochemical performance. The capacitances of the ACNF and PPy/ACNF electrodes were 141 and 261 F/g at 1 mA/cm2, respectively, whereas that of PPy/ACNF/CNT was 333 F/g. This improvement in capacitance was attributed to the following: (i) the preparation of aligned nano-sized ACNF/CNT by electrospinning and the addition of CNT and (ii) the formation of a good charge-transfer complex by the PPy coating on the surface of the aligned nano-sized ACNF/CNT. The former leads to a good morphology and superior properties, such as a higher surface area, the formation of mesopores and an increase in electrical conductivity. The latter offers a refined three-dimensional network due to the highly porous structure between ACNF/CNT and PPy.  相似文献   

4.
Polypyrrole/vanadium oxide nanotubes (PPy/VOx-NTs) as a new high-performance cathode material for rechargeable lithium-ion batteries are synthesized by a combination of hydrothermal treatment and cationic exchange technique. The morphologies and structures of the as-prepared samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential scanning calorimeter (TG-DSC) and X-ray powder diffraction (XRD). The results indicate that the organic templates are mainly substituted by the conducting polymer polypyrrole without destroying the previous nanotube structure. Their electrochemical properties are evaluated via galvanostatic charge/discharge cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that PPy/VOx-NTs exhibit high discharge capacity and excellent cycling performance at different current densities compared to vanadium oxide nanotubes (VOx-NTs). After 20 cycles, the reversible capacity of PPy/VOx-NTs (159.5 mAh g−1) at the current density of 80 mA g−1 is about four times of magnitude higher than that of VOx-NTs (37.5 mAh g−1). The improved electrochemical performance could be attributed to the enhanced electronic conductivity and the improved structural flexibility resulted from the incorporation of the conducting polymer polypyrrole.  相似文献   

5.
Cheng Yang 《Carbon》2009,47(4):1096-2058
Flexible dielectric polystyrene based composites containing multi-walled carbon nanotubes (MWCNTs) were reported. The MWCNTs were coated with polypyrrole (PPy) by an inverse microemulsion polymerization. Transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy indicated that the MWCNTs were coated with PPy. Our composites presented a stable high dielectric constant (∼44), rather low loss (<0.07), and large energy density (up to 4.95 J cm−3). The largely-enhanced dielectric performance originates from the organic shell PPy, which not only ensure good dispersion of MWCNTs in the polymer matrix but also screen charge movement to shut off leakage current. Such MWCNT composites can be used to store charge and electrical energy and play a key role in modern electronics and electric power systems.  相似文献   

6.
Preparation and characterization of graphite oxide/polypyrrole composites   总被引:1,自引:0,他引:1  
Yongqin Han  Yun Lu 《Carbon》2007,45(12):2394-2399
Graphite oxide (GO)/polypyrrole (PPy) composites (GPs) and 1,5-naphthalene disulfonic acid (1,5-NDA) doped GPs (1,5-NGPs) have been successfully synthesized via in situ polymerization of pyrrole on GO. The conductivity of 1,5-NGPs is as high as 7 S/cm, seven orders of magnitude higher than that of pristine GO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show PPy “dressed” on the surface of GO layers, while Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses confirm the interaction between GO and PPy. The results of thermogravimetric analysis (TGA) and heat treatment at 1000 °C show that the “dressed” PPy on the surface of GO layers in GPs and 1,5-NGPs has effectively prevented the deflagration of GO.  相似文献   

7.
Hsun-Tsing Lee 《Polymer》2005,46(24):10727-10732
In this work, we report the first electrochemical polymerization of polypyrrole (PPy) on Au substrates in aqueous solutions containing additives of prepared Ag nanoparticles with a diameter less than 2 nm. Due to the effect of Ag nanoparticles, which can provide a catalytic electroxidation pathway for the polymerization of PPy, the synthesized PPy film demonstrates some novel characteristics. It shows a finer and granular raspberry morphology with nano-scaled particles, and a rougher surface. The conductivity of PPy is significantly increased (∼8 times), which also reflects on the extremely high oxidation level of 0.35 revealed from the analysis of X-ray photoelectron spectroscopy (XPS). The mechanism of the nucleation and growth was investigated to explain the specific characteristics of PPy films.  相似文献   

8.
Halloysite nanotubes/polypyrrole (HNTs/PPy) nanocomposites with coaxial tubular morphology for use as electrode materials for supercapacitors were synthesized by the in situ chemical oxidative polymerization method based on self-assembled monolayer amine-functionalized HNTs. The HNTs/PPy coaxial tubular nanocomposites were characterized with transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), electrical conductivity measurement at different temperatures, cyclic voltammetry (CV), and galvanostatic charge-discharge measurements. The coaxial tubular nanocomposites showed their greatest conductivity at room temperature and a weak temperature dependence of the conductivity from 298 K to 423 K. A maximum discharge capacity of 522 F/g after correcting for the weight percent of the PPy phase at a current density of 5 mA cm−2 in a 0.5 M Na2SO4 electrolyte could be achieved in a half-cell setup configuration for the HNTs/PPy composites electrode, suggesting its potential application in electrode materials for electrochemical capacitors.  相似文献   

9.
Nano-thin polypyrrole (PPy) layers were coated on chemically modified ordered mesoporous carbon (m-CMK-3) by an in situ chemical polymerization. Structural and morphological characterizations of m-CMK-3/PPy composites were carried out using field emission scanning electron microscopy. Pseudo-capacitive behavior of the deposited PPy layers on m-CMK-3 was investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. As results of this study, the thin layer of PPy in the composite electrode was effective to obtain fully reversible and very fast Faradaic reaction. A maximum discharge capacity of 427 F g−1 or 487 F g−1 after correcting for weight percent of PPy phase at the current density of 5 mA cm−2, could be achieved in a half-cell setup configuration for the m-CMK-3/PPy composites electrode, suggesting its potential application in electrode material for electrochemical capacitors.  相似文献   

10.
We report here the first electrochemical polymerization of polypyrrole (PPy) on Au substrates in aqueous solutions containing additives of prepared Au nanoparticles with a diameter of ca. 2 nm. Encouragingly, the synthesized PPy films demonstrate novel characteristics due to the effects of Au nanoparticles, which provide a catalytic electroxidation pathway. The prepared PPy shows a stereomorphology, which is distinguishable from the typically granular raspberry morphology of pure PPy, and a rougher surface. The conductivity of PPy is significantly increased (∼10 times), which also reflects on the extremely high oxidation level of 0.36 revealed from the analysis of X-ray photoelectron spectroscopy (XPS). The mechanism of the nucleation and growth, and the X-ray diffraction (XRD) pattern were investigated to explain the specific characteristics of PPy films.  相似文献   

11.
Hua Bai 《Polymer》2007,48(18):5259-5267
The composites of polypyrrole (PPy) and poly(vinyl alcohol) (PVA) with aligned 3-dimensional (3D) microstructures have been fabricated via vapor deposition polymerization (VDP) of pyrrole onto the microstructured composites of PVA and FeCl3 (PVA-FeCl3) formed by directional freezing. In these composites, the microstructures of PVA act as the frameworks and the conducting polymer components provide the materials with conductive function. The composites are foam-like with low weight density. However, they have good mechanical properties, and can be easily mechanically processed into various desired shapes. The apparent conductivity of the composite containing 20 wt% PPy was measured to be approximately 0.1 S cm−1. The ammonia gas sensor based on this 3D composite exhibited high sensitivity. The strategy developed here can be extended to fabricate the 3D microstructured conductive composites by using other conducting polymers or water-soluble polymers.  相似文献   

12.
Elemental analysis of sequentially formed PPy/PEDOT polymer blends using liquid-like oxidant layers by vapor phase polymerization (VPP) has provided conclusive evidence for a ‘bottom up’ growth mechanism during polymerization. Chemical analysis by XPS of the top surface of the polymer thin film formed by sequential polymerization of pyrrole monomer, followed by EDOT monomer, revealed the outer most layer to be PEDOT. ToF-SIMS depth profiling confirmed this result, indicating the diminishing presence of PEDOT fragments with concomitant increasing PPy fragments as a function of depth from the top surface, an indication that PEDOT was stationed above PPy. When the polymerization process was reversed (i.e. EDOT followed by pyrrole) the opposite was observed. By extension we propose that the same growth mechanism exists for any VPP conducting polymer where a (viscous) liquid-like oxidant layer is utilized.  相似文献   

13.
Electrically conducting blends, based on polypyrrole (PPy) as the conductive polymer and poly(?-caprolactone) (PCL) as an insulating polymeric matrix, were prepared by polymerizing pyrrole (Py) in its vapor state inside the PCL matrix. The roles of specific interactions between blend components as well as the crystallization of PCL matrix in the resulting morphology have been analyzed by Fourier-transform infrared spectroscopy (FTIR), thermo-optical analysis (TOA) and atomic force microscopy (AFM). The results indicate that PPy is located within both the intra and interspherulitic regions of the PCL matrix achieving a well-developed connected network. Compared with amorphous matrices, considerable conductivity (around 1 S/cm) was raised with the crystalline PCL matrix with only a relatively low level of the conductive polymer (∼5%) in the blend.  相似文献   

14.
For the first time, the electrosynthesis of poly(pyrrole-co-bithiophene) copolymers (P(Py-co-BT) I, II, III) was carried out using the potentiostatic technique on stainless steel (SS) electrode from aqueous oxalic acid solutions containing fixed concentration of bithiophene (BT) and different concentrations of pyrrole (Py) in the presence of sodium dodecylsulfate (SDS). Corrosion protection behaviors of these copolymer-coated steels were investigated in 3.5% NaCl solution by potentiodynamic polarization, Tafel test technique and electrochemical impedance spectroscopy (EIS). Among the protective copolymer coatings, the P(Py-co-BT) II, which was obtained from polymerization solution containing 0.025 M Py, exhibited the best protection against corrosion. Hence, only this copolymer was characterized by cyclic voltammetry, FT-IR, UV–vis, conductivity measurement and differential scanning calorimetry (DSC) by comparing with those of the polybithiophene (PBT) and polypyrrole (PPy) homopolymers. It was determined that this polymer was the polypyrrole-based copolymer. The incorporation of BT units into PPy chains not only increased dry conductivity but also developed the toughness of polymer.  相似文献   

15.
Nano-thin polypyrrole (PPy) layers with thickness from ∼5 nm to several 10s nm were deposited on vapor grown carbon fibers (VGCF) by an in situ chemical polymerization. Using different concentrations of the pyrrole could control the thicknesses of deposited PPy layers. Surface morphology and thickness of the deposited PPy layers were confirmed by means of scanning electron microscopy and scanning transmission emission microscopy. Pseudo-capacitive behavior of the deposited PPy layers on VGCF investigated by means of cyclic voltammetry. Then, the PPy/VGCF composites were mixed with activated carbons (AC) at various mixing ratios. For the PPy/VGCF/AC composite electrodes, characteristics of specific capacitance and power capability were examined by half-cell tests. As results of this study, it was investigated that nano-thin PPy layer below ∼10 nm deposited on VGCF had high pseudo-capacitance and fast reversibility. Its specific capacitance per averaged weight of active material (PPy) was obtained as ∼588 F g−1 at 30 mV s−1 and maintained as ∼550 F g−1 at 200 mV s−1 of scan rate. Also, from the mixing 60 wt.% of the PPy/VGCF with 25 wt.% of AC, the PPy/VGCF/AC composite electrode exhibited higher power capability maintaining the specific capacitance per active materials of PPy and AC as ∼300 F g−1 at 200 mV s−1 in 6 M KOH.  相似文献   

16.
Xiang Xia  Pengfei Qiang 《Polymer》2011,52(3):786-792
Using a chemical oxidative polymerization, polypyrrole (PPy) nanofibers were synthesized. After further thermo-oxidative treatment in air, the conductivity of PPy nanofibers was adjusted to a suitable level for use as a non-conventional nanofiber-based electrorheological (ER) suspension. Under electric fields, rheological properties of thermo-oxidative PPy nanofiber suspension were characterized. It showed that the nanofiber suspension possessed notable ER effect and low current density. Especially, the yield stress and shear modulus of nanofiber suspension were stronger than that of conventional granular suspension at the same volume fraction though the off-field viscosity of former was lower than that of latter. The ER effect and current density of thermo-oxidative PPy nanofiber suspension depended on the thermo-oxidative time and the nanofibers obtained after treatment for 3-5 h at 240 °C exhibited the optimal ER performances. It also showed that the thermo-oxidative PPy nanofiber suspension could maintain good ER properties within a wide operating temperature range of 25-115 °C.  相似文献   

17.
Electrochemical polymerization of pyrrole in a solution containing dissolved poly(vinyl alcohol) (PVA) produces a homogeneous, free‐standing, flexible, and conductive polymer film. The films were characterized using infrared spectroscopy, wide‐angle X‐ray diffraction analysis, and scanning electron microscopy. The appearance of standard and some new absorption bands for polypyrrole (PPy) and PVA confirms the composite formation. The mechanical properties of conducting PVA + PPy films were studied and found to be improved with respect to the control PPy films. The electrical conductivity of the PVA + PPy films was measured by using standard four‐ and two‐probe methods. The conductivity of the films was found to depend on the pyrrole content. These conducting composites were further used as gas sensors by observing the change in current with respect to ammonia gas. It was observed that the current decreases when these composites were exposed to ammonia gas. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2511–2517, 2001  相似文献   

18.
The present study demonstrates a modified in situ emulsion polymerization (EP) approach convenient for the formation of polypyrrole/graphene (PPy/GN) nanocomposites with harnessed conductivities. A series of PPy/GN nanocomposites were prepared by loading different weight percent (wt %) of GN during in situ EP of pyrrole monomer. The polymerization was carried out in the presence of dodecyl benzene sulfonic acid, which acts as an emulsifier and protonating agent. The microstructures of the nanocomposites were studied by scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared, X‐ray photoelectron spectroscopy, UV–vis spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and thermogravimetric analyses. The electrical conductivities of the nanocomposite pellets pressed at different applied pressures were determined using four probe analyzer. The electrical conductivities of the nanocomposites were considerably enhanced as compared to those of the individual PPy samples pressed at the same pressures. An enhanced conductivity of 717.06 S m?1 was observed in the sample with 5 wt % GN loading and applied pressure of 8 tons. The results of the present study signify that the addition of GN in the PPy polymer harnesses both electrical and thermal properties of the polymer. Thus, PPy/GN nanocomposites with superior properties for various semiconductor applications can be obtained through direct loading of GN during the polymerization process. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41800.  相似文献   

19.
Polypyrrole (PPy) films modified with zinc were electrosynthesized onto SAE 4140 steel in presence of bis(2-ethylhexyl) sulfosuccinate (AOT). The Zn and PPy electrodeposition was realized by using cyclic voltammetry at different temperatures. The corrosion protection properties of the films were examined in chloride solution by open circuit measurements, linear polarization and electrochemical impedance spectroscopy (EIS). The obtained results indicate that the presence of Zn in the polymer matrix improves the anticorrosive performance of PPy films. The best anticorrosion efficiency was obtained for the coatings modified at 20 °C which provided anodic protection to the steel substrate for a long period of immersion in chloride solution. Cathodic protection was observed when the electrodeposition temperature was increased. Adherence and anticorrosive properties declined sharply for the coatings electrosynthesized at 5 °C.  相似文献   

20.
In the present work, proton conductivity in a polymer blend comprising proton solvating heterocycles was examined. Poly(1-vinyl-1,2,4-triazole), PVTri was produced by free radical polymerization of 1-vinyl-1,2,4-triazole and then proton-conducting polymer electrolytes were obtained by blending of PVTri with trifluoromethanesulfonic acid, triflic acid (TA). To promote the intrinsic proton conductivity the percent blending ratio was changed from 25% to 150% with respect to polymer repeat unit. The protonation of aromatic heterocyclic rings was proved with Fourier-transform infrared spectroscopy (FT-IR). Thermogravimetry (TG) analysis showed that the samples are thermally stable up to approximately 300 °C. Differential scanning calorimetry (DSC) results illustrated that the samples are homogeneous and their glass transition temperatures are located within 130-160 °C. The surface morphology of the materials were characterized by scanning electron microscopy (SEM). The proton conductivity of the blends increased with triflic acid concentration and the temperature. In the anhydrous state, the proton conductivity of PVTriTA100 is 2.2 × 10−4 S/cm at 150 °C and that of PVTriTA150 is approximately 0.012 S/cm at 80 °C which is similar to that of hydrated Nafion®.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号