首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrous ruthenium dioxide (RuO2·xH2O) prepared in a modified sol-gel process was subjected to annealing in air and water at various temperatures for supercapacitor applications. The textural and pseudocapacitive characteristics of RuO2·xH2O annealed in air and water were systematically compared to show the benefits of annealing in water (denoted as hydrothermal annealing). An important concept that hydrothermal annealing effectively restricts condensation of hydroxyl groups within nanoparticles, inhibits crystal growth, and maintains high water content of RuO2·xH2O is demonstrated in this work. The unique textural characteristics of hydrothermally annealed RuO2·xH2O are attributable to the high-pressured, water-enriched surroundings which restrain coalescence of RuO2·xH2O nanocrystallites. The crystalline, hydrous nature of hydrothermally annealed RuO2·xH2O favors the utilization of active species in addition to a merit of minor dependence of specific capacitance on the scan rate of CV for pseudocapacitors. As a result, RuO2·xH2O with hydrothermal annealing at 225 °C for 24 h exhibits 16 wt.% water, an average particle size of about 7 nm, and specific capacitance of ca. 390 F g−1.  相似文献   

2.
The electrochemical energy storage and delivery on the electrodes composed of hydrous ruthenium oxide (RuOx·nH2O) or activated carbon-hydrous ruthenium oxide (AC-RuOx) composites are found to strongly depend on the substrate employed. The contact resistance at the active material-graphite interface is much lower than that at the active material-stainless steel (SS) mesh interface. Thin films of gold plus RuOx·nH2O deposited on SS meshes (RuOx/Au/SS) are found to greatly improve the poor contact between SS meshes and electrode materials. The maximum specific capacitance (CS,RuOx) of RuOx·nH2O, 1580 F g−1 (measured at 1 mV s−1), very close to the theoretic value, was obtained from an AC-RuOx/RuOx/Au/SS electrode with 10 wt.% sol-gel-derived RuOx·nH2O annealed in air at 200 °C for 2 h. The highly electrochemical reversibility, high-power characteristics, good stability, and improved frequency response of this AC-RuOx/RuOx/Au/SS electrode demonstrate its promising application potential in supercapacitors. The ultrahigh specific capacitance of RuOx·nH2O probably results from the uniform size distribution of RuOx·nH2O nanoparticles, ranged from 1.5 to 3 nm which is clearly observed from the high-resolution transmission electron microscopy (HRTEM).  相似文献   

3.
RuO2·xH2O/NiO composites having RuO2 contents in the range 0-100 wt.% have been prepared by a co-precipitation method. Structural, microstructural and textural transformations after heating the as-prepared composites at 200 and 600 °C have been followed by X-ray diffraction, scanning electron microscopy (SEM) and nitrogen adsorption/desorption isotherms. At 200 °C the composites are made of micrometric particles in which nanometric crystallites of the two oxides are aggregated. The composites show microporosity (0.02-0.10 cm3/g), mesoporosity (0.07-0.12 cm3/g) and relatively high specific surface area (62-309 m2/g). At 600 °C the composites are fully dehydrated and RuO2 has crystallized and segregated. Microporosity and mesoporosity as well as specific surface area are strongly decreased. Specific capacitance and specific surface area of the composites heated at 200 and 600 °C have been measured and discussed on the basis of the RuO2 content. For comparison the specific capacitance and specific surface area of mixtures of NiO and RuO2·xH2O (or RuO2) have been taken as references. The higher specific capacitance of the 200 °C-heated composites compared to the 600 °C-heated ones is due to the higher specific surface area of the former and the higher pseudocapacitance of RuO2·xH2O compared to RuO2. The discussion reported in this work can be applied to other composites such as RuO2·xH2O/carbon and RuO2·xH2O/other oxides.  相似文献   

4.
Bo Gao 《Electrochimica acta》2010,55(11):3681-11258
Amorphous RuO2·xH2O was well coated on the benzenesulfonic functionalized multi-wall carbon nanotubes (f-MWCNTs) successfully via hydrothermal method. The decorated benzenesulfonic groups served as a bifunctional role both for solubilizing and dispersing MWCNTs into aqueous solution and for tethering Ru3+ precursor to facilitate the following uniform chemical deposition of RuO2·xH2O. The electrochemical performance of RuO2/f-MWCNTs and utilization of RuO2·xH2O were evidenced by cyclic voltammetry and galvanostatic charge/discharge tests. The specific capacitance of 1143 Fg−1 for RuO2·xH2O was obtained from RuO2/f-MWCNTs with 32 wt.% RuO2·xH2O, which was much higher than that of just 798 Fg−1 for the RuO2/p-MWCNTs. Even though the RuO2·xH2O loading increases to 45 wt.%, the utilization of RuO2·xH2O still possesses as high as 844.4 Fg−1, indicating a good energy capacity in the case of high loading.  相似文献   

5.
A series of ZnxMg1 − xGa2O4:Co2+ spinels (x = 0, 0.25, 0.5, 0.75, and 1.0) was successfully produced through low-temperature burning method by using Mg(NO3)2·4H2O, Zn(NO3)2·6H2O, Ga(NO3)3·6H2O, CO(NH2)2, NH4NO3, and Co(NO3)2·6H2O as raw materials. The product was characterized by X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The product was not merely a simple mixture of MgGa2O4 and ZnGa2O4; rather, it formed a solid solution. The lattice constant of ZnxMg1 − xGa2O4:Co2+ (0 ≤ x ≤ 1.0) crystals has a good linear relationship with the doping density, x. The synthesized products have high crystallinities with neat arrays. Based on an analysis of the form and position of the emission spectrum, the strong emission peak around the visible region (670 nm) can be attributed to the energy level transition [4T1(4P) → 4A2(4F)] of Co2+ in the tetrahedron. The weak emission peak in the near-infrared region can be attributed to the energy level transition [4T1(4P) → 4T2(4F)] of Co2+ in the tetrahedron.  相似文献   

6.
In this study, single crystal V3O7·H2O nanobelts were successfully synthesized using a simple hydrothermal route, in which templates or catalysts were absent. The synthesized V3O7·H2O nanobelts are highly crystalline and have lengths up to several tens of micrometers. The width and thickness of the nanobelts are found to be about 30-50 and 30 nm, respectively. A lithium battery using V3O7·H2O nanobelts as the positive electrode exhibits a high initial discharge capacity of 409 mAh g−1, corresponding to the formation of LixV3O7·H2O (x = 4.32). Such a high degree of electrochemical performance is attributed to the intrinsic properties of the single-crystalline V3O7·H2O nanobelts.  相似文献   

7.
A two-step hydrothermal process was developed to synthesize hydrous 30RuO2-70SnO2 composites with much better capacitive performances than those fabricated through the normal hydrothermal process, co-annealing method, or modified sol-gel procedure. A very high specific capacitance of RuO2 (CS,Ru), ca. 1150 F g−1, was obtained when this composite was synthesized via this two-step hydrothermal process with annealing in air at 150 °C for 2 h. The voltammetric currents of this annealed composite were found to be quasi-linearly proportional to the scan rate of CV (up to 500 mV s−1), demonstrating its excellent power property. From Raman, UV-vis spectroscopic and TEM analyses, the reduction in mean particulate size is clearly found for this two-step oxide composite, attributable to the co-precipitation of (RuδSn1−δ)O2·xH2O onto partially dissolved SnO2·xH2O and the formation of (RuδSn1−δ)O2·xH2O crystallites in the second step. This effect significantly promotes the utilization of RuO2 (i.e., very high CS,Ru). The excellent capacitive performances, very similar to that of RuO2·xH2O, suggest the deposition of RuO2-enriched (RuδSn1−δ)O2·xH2O onto SnO2·xH2O seeds as well as the individual formation of (RuδSn1−δ)O2·xH2O crystallites in the second hydrothermal step.  相似文献   

8.
LiNi0.5Co0.5VO4 nano-crystals were solvothermally prepared using a mixture of LiOH·H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O and NH4VO3 in isopropanol at 150–200 °C followed by 300–600 °C calcination to form powders. TGA curves of the solvothermal products show weight losses due to evaporation and decomposition processes. The purified products seem to form at 500 °C and above. The products analyzed by XRD, selected area electron diffraction (SAED), energy dispersive X-ray (EDX) and atomic absorption spectrophotometer (AAS) correspond to LiNi0.5Co0.5VO4. V–O stretching vibrations of VO4 tetrahedrons analyzed using FTIR and Raman spectrometer are in the range of 620–900 cm−1. A solvothermal reaction at 150 °C for 10 h followed by calcination at 600 °C for 6 h yields crystals with lattice parameter of 0.8252 ± 0.0008 nm. Transmission electron microscope (TEM) images clearly show that the solvothermal temperatures play a more important role in the size formation than the reaction times.  相似文献   

9.
The nanoporous RuO2·3.38H2O was synthesized with a surfactant template using sodium dodecyl sulfate. The surface area of the material amounted to 220 m2 g−1 while the maximum specific capacitance obtained was 870 Fg−1 at a scan rate of 10 mV s−1. The specific capacitance of nanoporous RuO2·3.38H2O electrode exhibits enhancement, compared with other porous RuO2 materials synthesized by different methods. The nanoporous RuO2·3.38H2O is a very promising material for high performance capacitance.  相似文献   

10.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

11.
Grass blade-like microparticle MnPO4·H2O was synthesized by a simple precipitation at room temperature using a mixture of manganese sulphate monohydrate, phosphoric acid and water at pH = 7. The thermogravimetric study indicates that the synthesized compound is stable below 500 °C and its final decomposed product is Mn2P2O7. The pure monoclinic phases of the synthesized MnPO4·H2O and its final decomposed product Mn2P2O7 are verified by XRD data. FTIR spectra indicate the presences of the PO43− ion and water molecules in the MnPO4·H2O structure and the P2O74− ion in the Mn2P2O7 structure. The thermal stability, crystallite size, and grass blade-like microparticle of MnPO4·H2O in this work are different from previous reports, which may be caused by the starting reagents and reaction condition for the precipitation.  相似文献   

12.
Amorphous Ru1−yCryO2/TiO2 nanotube composites were synthesized by loading different amount of Ru1−yCryO2 on TiO2 nanotubes via a reduction reaction of K2Cr2O7 with RuCl3·nH2O at pH 8, followed by drying in air at 150 °C. Cyclic voltammetry and galvanostatic charge/discharge tests were applied to investigate the performance of the Ru1−yCryO2/TiO2 nanotube composite electrodes. For comparison, the performance of amorphous Ru1−yCryO2 was also studied. The results demonstrated that the three dimensional nanotube network of TiO2 offered a solid support structure for active materials Ru1−yCryO2, allowed the active material to be readily available for electrochemical reactions, and increased the utilization of active materials. A maximum specific capacitance 1272.5 F/g was obtained with the proper amount of Ru1−yCryO2 loaded on the TiO2 nanotubes.  相似文献   

13.
Ni modified K2CO3/MoS2 catalyst was prepared and the performance of higher alcohol synthesis catalyst was investigated under the conditions: T = 280–340 °C, H2/CO (molar radio) = 2.0, GHSV = 3000 h 1, and P = 10.0 MPa. Compared with conventional K2CO3/MoS2 catalyst, Ni/K2CO3/MoS2 catalyst showed higher activity and higher selectivity to C2+OH. The optimum temperature range was 320–340 °C and the maximum space-time yield (STY) of alcohol 0.30 g/ml h was obtained at 320 °C. The selectivity to hydrocarbons over Ni/K2CO3/MoS2 was higher, however, it was close to that of K2CO3/MoS2 catalyst as the temperature increased. The results indicated that nickel was an efficient promoter to improve the activity and selectivity of K2CO3/MoS2 catalyst.  相似文献   

14.
Transparent Nd:Y2O3 ceramic was obtained by sintering mono-sized spherical powder. The powder was prepared by homogeneous precipitation method in aqueous media using urea to regulate the pH. The structure and morphology of the powder were investigated by TG-DTA, XRD, SEM and IR spectrum. The effect of aging temperature, time, and the concentration of urea, [Y3+], and [Nd3+] were investigated. Results showed that the obtained precursor was R2(OH)CO3·H2O (R = Y, Nd), and the least size of mono-sized spherical yttria particles was 72 nm by a microwave oven method after calcinations at 850 °C for 4 h. After dry press and CIP, the particles accumulated closely, and no defects can be detected in the green body.  相似文献   

15.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

16.
G.Q. Liu  Qilu  W. Li 《Electrochimica acta》2005,50(9):1965-1968
Spinel compound LiNi0.5Mn1.5O4 was synthesized by a chemical wet method. Mn(NO3)2, Ni(NO3)2·6H2O, NH4HCO3 and LiOH·H2O were used as the starting materials. At first, Mn(NO3)2 and Ni(NO3)2·6H2O reacted with NH4HCO3 to produce a precursor, then the precursor reacted with LiOH·H2O to synthesize product LiNi0.5Mn1.5O4. The product showed a single spinel phase under appropriate calcination conditions, and exhibited a high voltage plateau at about 4.6-4.8 V in the charge/discharge process. The LiNi0.5Mn1.5O4 had a discharge specific capacity of 118 mAh/g at about 4.6 V and 126 mAh/g in total in the first cycle at a discharge current density of 2 mA/cm2. After 50 cycles, the total discharge capacity was above 118 mAh/g.  相似文献   

17.
A composite of Sc2W3O12/Cu where Sc2W3O12, the core, is coated by the Cu shell was synthesized using simple electroless plating method. As-prepared Sc2W3O12/Cu composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and thermomechanical analyzer (TMA) techniques. The study results show that the Pd-Sn activator was successfully formed on the surface of Sc2W3O12 after the sensitization and activation. In the electroless plating process, Cu nanocrystals formed firstly, and then grew together to form a continuous coating. Sc2W3O12/Cu core-shell composites exhibit a negative linear coefficient of thermal expansion CTE = −4.47 × 10−6 °C−1 from room temperature to 200 °C.  相似文献   

18.
This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a CuO/La2O3 composite catalyst at temperatures between 150 and 400 °C. A CuO/La2O3 composite catalyst was prepared by co-precipitation of copper nitrate and lanthanum nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (C0 = 1000 ppm), the space velocity (GHSV = 92,000 l/h), the relative humidity (RH = 12%) and the concentration of oxygen (O2 = 4%) affect the operational stability and the capacity for removing NH3. The catalysts that were characterized using FTIR, XRD, UV-Vis, BET and PSA, have shown that the catalytic behavior is related to the copper (II) oxide, while lanthanum (III) oxide may serve only to provide active sites for the reaction during a catalyzed oxidation run. The experimental results show that the extent of conversion of ammonia by SCO in the presence of the CuO/La2O3 composite catalyst was a function of the molar ratio. The ammonia was removed by oxidation in the absence of CuO/La2O3 composite catalyst, and around 93.0% NH3 reduction was achieved during catalytic oxidation over the CuO/La2O3 (8:2, molar/molar) catalyst at 400 °C with an oxygen content of 4.0%. Moreover, the effect of the reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of under 92,000 h− 1.  相似文献   

19.
Hydrous, crystalline, binary (Ru-Ti)O2·nH2O with compositions equal to the ratios of metallic ions in the precursor solutions are successfully synthesized by a mild hydrothermal process. The maximum utilization of RuO2·nH2O (ca. 793 F/g) occurs at the composition of 60 M% TiO2·nH2O although phase separation is clearly found for this TiO2-enriched binary oxides. The nano-structured architecture with a high BET surface area (ca. 253 m2/g) of the hydrothermal-derived (Ru-Ti)O2·nH2O with annealing at 200 °C favors the physical adsorption of water and maintains a high water content which is novel and never found before. Due to this novel nanostructure, the annealed (Ru-Ti)O2·nH2O synthesized by means of the hydrothermal process exhibits excellent performances (i.e., high utilization of RuO2, high power property, and long cycle life) for supercapacitors.  相似文献   

20.
Directionally solidified Al2O3-based eutectic ceramic in situ composites with inherently high melting point, low density, excellent microstructure stability, outstanding resistance to creep, corrosion and oxidation at elevated temperature, have attracted significant interest as promising candidate for high-temperature application. This paper reviews the recent research progress on Al2O3-based eutectic ceramic in situ composites in State Key Laboratory of Solidification Processing. Al2O3/YAG binary eutectic and Al2O3/YAG/ZrO2 ternary eutectic ceramics are prepared by laser zone melting, electron beam floating zone melting and laser direct forming, respectively. The processing control, solidification characteristic, microstructure evolution, eutectic growth mechanism, phase interface structure, mechanical property and toughening mechanism are investigated. The high thermal gradient and cooling rate during solidification lead to the refined microstructure with minimum eutectic spacing of 100 nm. Besides the typical faceted/faceted eutectic growth manner, the faceted to non-faceted growth transition is found. The room-temperature hardness HV and fracture toughness KIC are measured with micro-indentation method. For Al2O3/YAG/ZrO2, KIC = 8.0 ± 2.0 MPa m1/2 while for Al2O3/YAG, KIC = 3.6 ± 0.4 MPa m1/2. It is expectable that directionally solidified Al2O3-based eutectic ceramics are approaching practical application with the advancement of processing theory, technique and apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号