首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A numerical simulation of an enzyme-catalyzed oxygen cathode is presented and applied to the analysis of transport limitations in operating electrodes, with the goal of predicting the limits of obtainable cathode current density. Based on macrohomogeneous and thin-film theories, and accounting for dual-substrate enzyme kinetics, the one-dimensional model predicts a maximum current density of about 9.2 mA cm−2 at 0.6 V (SHE) for a 300 μm thick electrode operating oxygen-saturated pH 5 buffer at 37 °C and relying on diffusion of dissolved oxygen alone. However, by introducing gas-phase diffusive transport, or alternatively a convective, flow-through approach, the model predicts that electrodes of identical thickness may provide current densities up to 60 mA cm−2 in air and exceeding 100 mA cm−2 in pure O2. Such performance would move enzyme electrodes closer to practical implementation in implantable power devices and other low-temperature fuel cells such as direct methanol fuel cells.  相似文献   

2.
Liquid crystalline and micellar aqueous solutions of the nonionic surfactant Triton X-100 were used to direct the electrodeposition of Pt-Ru nanoparticles onto graphite felts, which were investigated as novel anodes for the direct methanol fuel cell. The effects of surfactant concentration, current density and deposition time in the preparation of these three-dimensional electrodes were studied in a factorial experiment and the electrodes were characterized by SEM and ICP-AES. Cyclic voltammetry, chronoamperometry and chronopotentiometry were carried out to assess the activity of the catalyzed felts for methanol oxidation. The presence of Triton X-100 (40-60 wt.%) coupled with an acidic plating solution were essential for the efficient co-electrodeposition of Ru in the presence of Pt to yield approximately a 1:1 Pt:Ru atomic ratio in the deposit. The highest mass specific activity, 24 A g−1 at 298 K (determined by chronoamperometry after 180 s at 0 V versus Hg/Hg2SO4, K2SO4std), was obtained for the Pt-Ru electrodeposited in the presence of 40 wt.% Triton X-100 at 60 A m−2, 298 K for 90 min. Surfactant mediated electrodeposition is a promising method for meso-scale (ca. 10-60 nm diameter) catalyst particle preparation on three-dimensional electrodes.  相似文献   

3.
In the existing microbial fuel cells (MFCs), the use of platinized electrodes and Nafion® as proton exchange membrane (PEM) leads to high costs leading to a burden for wastewater treatment. In the present study, two different novel electrode materials are reported which can replace conventional platinized electrodes and can be used as very efficient oxygen reducing cathodes. Further, a novel membrane which can be used as an ion permeable membrane (Zirfon®) can replace Nafion® as the membrane of choice in MFCs. The above mentioned gas porous electrodes were first tested in an electrochemical half cell configuration for their ability to reduce oxygen and later in a full MFC set up. It was observed that these non-platinized air electrodes perform very well in the presence of acetate under MFC conditions (pH 7, room temperature) for oxygen reduction. Current densities of −0.43 mA cm−2 for a non-platinized graphite electrode and −0.6 mA cm−2 for a non-platinized activated charcoal electrode at −200 mV vs. Ag/AgCl of applied potential were obtained. The proposed ion permeable membrane, Zirfon® was tested for its oxygen mass transfer coefficient, K0 which was compared with Nafion®. The K0 for Zirfon® was calculated as 1.9 × 10−3 cm s−1.  相似文献   

4.
Qingfeng Yi  Fengjuan Niu 《Fuel》2011,90(8):2617-2623
Novel porous Pd particles (nanoPd-PEG, nanoPd-PEG-EDTA, nanoPd-HCHO-EDTA, nanoPd-EG, nanoPd-HCHO and nanoPd-EG-EDTA) were synthesized by a hydrothermal method using different reduction agents in the absence and presence of EDTA and investigated as electrocatalysts for ethanol oxidation in alkaline solutions. Results showed that PdCl2 was hydrothermally reduced to nano-scale palladium particles and a three-dimensional texture was formed for Pd particles. Presence of EDTA was favorable for the formation of Pd nanoparticles with small sizes of ca. 70 nm. Ethanol oxidation on the present Pd catalysts took place at a more negative anodic potential in 1 M NaOH solution. Among the electrocatalysts investigated, the electrocatalytic activity of the nanoPd-HCHO-EDTA was the greatest, which was characterized by the largest anodic peak current density of 151 mA cm−2 and lowest onset oxidation potential of −0.788 V (vs. SCE) for the positive scan. Very low charge transfer resistances on the nanoPd-HCHO-EDTA in 1 M NaOH containing various concentrations of ethanol were obtained according to the analysis for electrochemical impedance spectra (EIS). The prepared porous Pd catalysts were promising alternatives to Pt electrodes applied in alkaline direct alcohol fuel cells.  相似文献   

5.
A new procedure has been introduced to enhance catalytic activity of ruthenium-selenium electro-catalysts for oxygen reduction, in which materials are treated under hydrogen atmosphere at elevated temperatures. The characterisation using scanning electron microscopy, energy dispersive spectroscopy or energy dispersive X-ray spectroscopy exhibited that the treatment at 400 °C made catalysts denser while their porous nature remained, led to a good degree of crystallinity and an optimum Se:Ru ratio. The half cell test confirms feasibility of the new procedure; the catalyst treated at 400 °C gave the highest reduction current (55.9 mA cm−2 at −0.4 V) and a low methanol oxidation effect coefficient (3.8%). The direct methanol fuel cell with the RuSe 400 °C cathode catalyst (2 mg RuSe cm−2) generated a power density of 33.8 mW cm−2 using 2 M methanol and 2 bar oxygen at 90 °C. The new procedure produced the catalysts with low decay rates. The best sample was compared to the Pt and to the reported ruthenium-selenium catalyst. Possible reasons for the observations are discussed.  相似文献   

6.
Three sets of electrodes, namely Pt electroplated Ti (PET) and diffusion annealed PET (DAPET) of plating thickness 3, 5, 7 and 10 μm and thermochemically glazed mixed oxide coated titanium anode (MOCTA-G) were evaluated for their performance, with a view to optimizing the current density conditions for maximum efficiency during the electrolytic destruction of nitric acid. In the acid killing by electro-reduction process, concentration of nitric acid in the high level waste (HLW) from the spent nuclear fuel reprocessing plant was brought down from about 4 to 0.5 M in order to reduce the amount of HLW by subsequent evaporation and to minimise the corrosion in waste tanks during storage of the concentrated waste solution. The electrochemical reduction of 4 and 8 M nitric acid to near neutral conditions was carried out with the above-said anodes and Ti cathode at various cathodic current densities ranging from 10 to 80 mA cm−2. At current densities below 15 mA cm−2 MOCTA-G electrode worked satisfactorily, whereas PET and DAPET electrodes could withstand and function well at much higher cathodic current densities (up to 80 mA cm−2). The life assessment of a 3 μm thick PET electrode at a cathodic current density of 60 mA cm−2 in 8 M HNO3 for a period of 110 h showed no failure. Phase identification of the plated electrodes was done by XRD measurements and their surface morphology was investigated by SEM.  相似文献   

7.
The manufacture and properties evaluation of Co-based thin film alloys are extensively studied because of their magnetic properties that make them a critical element in many different applications and devices. Therefore the electrodeposition of CoPd alloy thin films was studied from a chloride bath containing glycine as additive. The cobalt content in the CoPd deposits varied from 6.4 to 94.0 at% by controlling the pH and [Co2+]/[Pd2+] ratio in the bath. Current efficiencies were independent of the solution pH and bath composition. The morphology of the deposits depended on the applied current density: current densities higher than 50 mA cm−2 resulted in deposits with a typical cauliflower morphology. For current densities lower than 25 mA cm−2 cracks was observed. The XRD measurements showed that all CoPd alloys were amorphous. The magnetic properties for CoPd alloys revealed that the coercivity (Hc) values ranged from 84 up to 555 Oe and the magnetic saturation (Ms) from 0 to 1.73 T.  相似文献   

8.
Micro-scaled spherical CoSn2/Sn alloy powders synthesized from oxides of Sn and Co via carbothermal reduction at 800 °C were examined for use as anode materials in Li-ion battery. The phase composition and particle morphology of the CoSn2/Sn alloy composite powders were investigated by XRD, SEM and TEM. The prepared CoSn2/Sn alloy composite electrode exhibits a low initial irreversible capacity of ca. 140 mAh g−1, a high specific capacity of ca. 600 mAh g−1 at constant current density of 50 mA g−1, and a good rate capability. The stable discharge capacities of 500-515 mAh g−1 and the columbic efficiencies of 95.8-98.1% were obtained at current density of 500 mA g−1. The relatively large particle size of CoSn2/Sn alloy composite powder is apparently favorable for the lowering of initial capacity loss of electrode, while the loose particle structural characteristic and the Co addition in Sn matrix should be responsible for the improvement of cycling stability of CoSn2/Sn electrode.  相似文献   

9.
An enhanced hydrogen production by photoelectrocatalytic water splitting was obtained using extremely highly ordered nanotubular TiO2 arrays in this work. Highly ordered TiO2 nanotube arrays with a regular top porous morphology were grown by a facile and green three-step electrochemical anodization. The well ordered hexagonal concaves were uniformly distributed on titanium substrate by the first anodization, served as a template for further growth of TiO2 nanotubes. As a result, the TiO2 nanotube arrays constructed through the third anodization showed appreciably more regular architecture than that of the sample by conventional single anodization under the same conditions. The enhanced photoelectrochemical activity was demonstrated through the hydrogen generation by photoelectrocatalytic water splitting, with an exact H2 evolution rate up to 420 μmol h−1 cm−2 (10 mL h−1 cm−2) in 2 M Na2CO3 + 0.5 M ethylene glycol. The photocurrent density of the third-step anodic TiO2 nanotubes is about 24 mA cm−2 in 0.5 M KOH, which is 2.2 times higher than that of the normal TiO2 nanotubes (∼11 mA cm−2) by a single electrochemical anodization.  相似文献   

10.
A novel multiscale Pd-Ag catalyzed porous cathode for the magnesium-hydrogen peroxide fuel cell was prepared by electrodeposition of Pd onto Ag coated nickel foam surface from an aqueous solution of palladium chloride. The structure, morphology and composition of the electrodeposited catalyst layer were characterized using SEM, EDS and XPS analysis. Magnesium-hydrogen peroxide fuel cell tests with the Pd-Ag deposited cathode were carried out and compared with the Ag-deposited electrode. The effects of temperature, H2O2 flow rate and H2O2 concentration on cell performance were investigated, and the electrode stability test was carried out. The Pd-Ag deposited electrode showed higher catalytic activity for the reduction of hydrogen peroxide than that of the Ag-deposited Ni foam cathode, and gave much improved fuel cell performance. The magnesium-hydrogen peroxide fuel cell with nanostructured Pd-Ag coated nickel foam cathode presented a maximum power density of 140 mW cm−2, but the Mg-H2O2 fuel cell with Ag coated Ni foam cathode gave only 110 mW cm−2 under the same operation condition.  相似文献   

11.
The electrochemical oxidation of Ibuprofen (Ibu) was performed using a Ti/Pt/PbO2 electrode as the anode, prepared according to literature, and a boron doped diamond (BDD) electrode, commercially available at Adamant Technologies. Tests were performed with model solutions of Ibu, with concentrations ranging from 0.22 to 1.75 mM for the Ti/Pt/PbO2 electrode and 1.75 mM for the BDD electrode, using 0.035 M Na2SO4 as the electrolyte, in a batch cell, at different current densities (10, 20 and 30 mA cm−2). Absorbance measurements, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) tests were conducted for all samples. The results have shown a very good degradation of Ibu, with COD removals between 60 and 95% and TOC removals varying from 48 to 92%, in 6 h experiments, with higher values obtained with the BDD electrode. General Current Efficiency and Mineralization Current Efficiency, determined for both electrodes, show a similar behaviour for 20 mA cm−2 but a very different one at 30 mA cm−2. The combustion efficiency was also determined for both anodes, and found to be slightly higher with BDD at lower current density and equal to 100% for both anodes at 30 mA cm−2.  相似文献   

12.
We report on the use of the polyoxometalate acids of the series [PMo(12 − n)VnO40](3 + n)− (n = 0-3) as electrocatalysts in both the anode and the cathode of polymer-electrolyte membrane (PEM) fuel cells. The heteropolyacids were incorporated as catalysts in a commercial gas diffusion electrode based on Vulcan XC-72 carbon which strongly adsorbed a low loading of the catalyst, ca. 0.1 mg/cm2. The moderate activity observed was independent of the number of vanadium atoms in the polyoxometalate. In the anode the electrochemistry is dominated by the V3+/4+ couple. With a platinum reference wire in contact with the anode, polarization curves are obtained withVOC of 650 mV and current densities of 10 mA cm−2 at 100 mV at 80 °C. These catalysts showed an order of magnitude more activity on the cathode after moderate heat treatment than on the anode,VOC = 750 mV, current densities of 140 mA cm−2 at 100 mV. The temperature dependence of the catalysts was also investigated and showed increasing current densities could be achieved on the anode up to 139 °C and the cathode to 100 °C showing the potential for these materials to work at elevated temperatures.  相似文献   

13.
Pulsed electrodeposition methods were applied to the preparation of bismuth telluride films. Over the potential ranges from −170 mV to −600 mV, the formation of Bi2Te3 nuclei proceeded through a three-dimensional instantaneous nucleation mode. The nuclei densities for several values of potential were ranged between ∼106 nuclei cm−2 and ∼108 nuclei cm−2. For a pulsed galvanostatic electroplating, the best covering percentage and a stoichiometry close to the desired Bi2Te3 were obtained with the parameters ton, toff and Jc, respectively, equal to 10 ms, 1000 ms and −100 mA cm−2.  相似文献   

14.
Electrochemical deposition of polyaniline (PANI) is carried out on a porous carbon substrate for supercapacitor studies. The effect of substrate is studied by comparing the results obtained using platinum, stainless steel and porous carbon substrates. PANI deposited at 100 mV s−1 sweep rate by potentiodynamic technique on porous carbon substrate is found to possess superior capacitance properties. Experimental variables, namely, concentrations of aniline monomer and H2SO4 supporting electrolyte are varied and arrived at the optimum concentrations to obtain a maximum capacitance of PANI. Low concentrations of both aniline and H2SO4, which produce PANI at low rates, are desirable. The PANI deposits prepared under these conditions possess network morphology of nanofibrils. Capacitance values as high as 1600 F g−1 are obtained and PANI coated carbon electrodes facilitate charge-discharge current densities as high as 45 mA cm−2 (19.8 A g−1). Electrodes are found to be fairly stable over a long cycle-life, although there is some capacitance loss during the initial stages of cycling.  相似文献   

15.
A solid oxide fuel cell constructed from Ni-SDC anode and LSGM electrolyte was applied to the partial oxidation of methane to syngas (CO+H2) at 700-800 °C with the merits of co-generation of electricity and controllable O2 supply. It was found that the co-generated syngas at H2/CO ratio of 1.4-2.0 varied with applied current densities, CH4 flow rates and operating temperatures. The cell voltage at 100 mA cm−2 and 800 °C was 0.90 V, i.e. about 90 mW cm−2 power density could be obtained. The cell operating at 50 mA cm−2 for 24 h almost showed no degradation of the cell performance. The observed carbon deposition seemed mainly taking place by CH4 cracking reaction.  相似文献   

16.
Lead dioxide (PbO2) thin films were prepared on Ti/SnO2 substrates by means of electrodeposition method. Galvanostatic technique was applied in PbO2 film formation process, and the effect of deposition current on morphology and crystalline form of the PbO2 thin films was studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The energy storage capacity of the prepared PbO2 electrode was investigated by means of cyclic voltammetry (CV) and charge/discharge cycles, and a rough surface structure PbO2 film was selected as positive electrode in the construction of PbO2/AC hybrid capacitor in a 1.28 g cm−3 H2SO4 solution. The electrochemical performance was determined by charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results showed that the PbO2/AC hybrid capacitor exhibited high capacitance, good cycling stability and long cycle life. In the voltage range of 1.8-0.8 V during discharge process, considering the weight of all components of the hybrid capacitor, including the two electrodes, current collectors, H2SO4 electrolyte and separator, the specific energy and power of the device were 11.7 Wh kg−1 and 22 W kg−1 at 0.75 mA cm−2, and 7.8 Wh kg−1 and 258 W kg−1 at 10 mA cm−2 discharge currents, respectively. The capacity retains 83% of its initial value after 3000 deep cycles at the 4 C rate of charge/discharge.  相似文献   

17.
In this paper we have studied the electrooxidation of methanol on electrodes obtained through the electrodeposition of platinum microparticles on poly (o-methoxyaniline) films. The dependence of the electroactivity on the electrodes preparation parameters has been detailed. It has been shown that the concentration of the monomer during the formation of the polymeric films influences the rate of polymer growth and the electrocatalytic activity. A maximum methanol electrooxidation peak current has been observed for polymers grown to an anodic voltammetric charge of approximately 75 mC cm−2. It has been observed that the electroactivity increases when the platinum deposition is carried out in several steps instead of a single potential electrolysis. The conditions that favour a slower deposition process, i.e., smaller H2PtCl6 concentrations and smaller electrodeposition overpotential, lead to an enhancement of the methanol electrooxidation currents. This enhancement is attributed to an increase in the platinum surface area as a consequence of a decrease in the platinum particle size.  相似文献   

18.
For this study, catalyst layers for polymer electrolyte membrane fuel cells (PEMFC) were prepared by spraying and sputtering to deposit Pt amount of 0.1 and 0.01 mg cm−2, respectively. These Pt layers were then assembled to fabricate membrane electrode assemblies (MEA) having either single- or double-layered catalysts. The PEM fuel cell with double layers showed a current density of 777 mA cm−2 at a cell voltage of 0.6 V, which is a higher current density than state-of-the-art fuel cells at 643 mA cm−2. These results indicate that Pt loading in state-of-the-art PEMFCs could be reduced by approximately 50% with no performance loss by using both spraying and sputtering method in the MEA fabrication process.  相似文献   

19.
The electrodes prepared by a sputtering method were evaluated as the cathodes for direct methanol fuel cells (DMFCs). Pt loading below 0.25 mg cm−2 achieved higher mass activities than that of 0.5 mg cm−2 prepared by the paste method, which was general conventional method. However, an increase in Pt loading reduced the catalyst activity for the oxygen reduction reaction (ORR). This result may suggest an increase in only electrochemically inactive Pt. Pt utilization efficiency can be found about ten times higher at Pt loading of 0.04 mg cm−2. Moreover, addition of Nafion to sputter-deposited Pt cathodes is found possible to improve the catalyst activity for the ORR, but the excess Nafion over the optimum condition reduces the active sites.  相似文献   

20.
Makoto Togo 《Electrochimica acta》2007,52(14):4669-4674
Viamin K3-modified poly-l-lysine (PLL-VK3) was synthesized and used as the electron transfer mediator during catalytic oxidation of NADH by diaphorase (Dp) at the anode of biofuel cell. PLL-VK3 and Dp were co-immobilized on an electrode and then coated with NAD+-dependent glucose dehydrogenase (GDH). The resulting enzymatic bilayer (abbreviated PLL-VK3/Dp/GDH) catalyzed glucose oxidation. Addition of carbon black (Ketjenblack, KB) into the bilayer enlarged the effective surface area of the electrode and consequentially increased the catalytic activity. An oxidation current of ca. 2 mA cm−2 was observed when the electrochemical cell contained a stirred 30 mM glucose, 1.0 mM NAD+, pH 7.0 phosphate-buffered electrolyte solution. The performance of glucose/O2 biofuel cells, constructed as fluidic chips with controllable fuel flow and containing a KB/PLL-VK3/Dp/GDH-coated anode and an Ag/AgCl or a polydimethylsiloxane-coated Pt cathode, were evaluated. The open circuit voltage of the cell with the PDMS-coated Pt cathode was 0.55 V and its maximum power density was 32 μW cm−2 at 0.29 V when a pH 7.0-buffered fuel containing 5.0 mM glucose and 1.0 mM NAD+ was introduced into the cell at a flow rate of 1.0 mL min−1. The cell's output increased as the flow rate increased. During 18 h of continuous operation of the cell with a load of 100 kΩ, the output current density declined by ca. 50%, probably due to swelling of the enzyme bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号