首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electropolymerization of a new phenothiazine derivative (bis-phenothiazin-3-yl methane; BPhM) on glassy carbon (GC) electrode generates a conducting film of poly-BPhM, in stable contact with the electrode surface. The heterogeneous electron-transfer process corresponding to the modified electrode is characterized by a high rate constant (50.4 s−1, pH 7). The GC/poly-BPhM electrode shows excellent electrocatalytic activity toward NADH oxidation. The rate constant for catalytic NADH oxidation, estimated from rotating disk electrode (RDE) measurements and extrapolated to zero concentration of NADH, was found to be 9.4 × 104 M−1 s−1 (pH 7). The amperometric detection of NADH, at +200 mV vs. SCE, is described by the following electroanalytical parameters: a sensitivity of 1.82 mA M−1, a detection limit of 2 μM and a linear domain up to 0.1 mM NADH.  相似文献   

2.
A multi-walled carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of guanosine. CILE was prepared by mixing hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), graphite powder and liquid paraffin together. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of guanosine and an irreversible oxidation peak appeared at 1.067 V (vs. SCE) with improved peak current. The electrochemical behavior of guanosine on the MWCNTs/CILE was carefully studied by cyclic voltammetry and the electrochemical parameters such as the charge transfer coefficient (α) and the electrode reaction standard rate constant (ks) were calculated with the result as 0.66 and 2.94 × 10−4 s−1, respectively. By using differential pulse voltammetry (DPV) as the detection method, a linear relationship was obtained between the oxidation peak current and the guanosine concentration in the range from 1.0 × 10−7 to 4.0 × 10−5 mol/L with the detection limit as 7.8 × 10−8 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine detection and the modified electrode showed good ability to distinguish the electrochemical response of guanosine and adenosine.  相似文献   

3.
A new species was formed when protein P23 (one segment of ciliate Euplotes octocarinatus centrin) was added to a solution of Eu3+. The interaction between P23 and Eu3+ was investigated by cyclic voltammetry, pulse voltammetry and electrochemical impedance spectroscopy in 10 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES) buffer (pH 7.4) using a pyrolytic graphite electrode. The formal potential (Eo′) of Eu3+ shifted from −0.61 to −0.84 V (versus saturated calomel electrode) after P23 was added to the Eu3+ solution. The diffusion coefficient (D), the charge-transfer coefficient (α) and the electron transfer standard rate constant (ks) were obtained in the absence and the presence of P23. The affinity constant of Eu3+ and P23 was determined to be (1.89 ± 0.51) × 104 M−1. The electrochemical investigation of europium bound to the protein provided useful data for the studies of calcium-binding proteins.  相似文献   

4.
The electrosynthesis of polyaniline on the bare aluminum and pre-treated aluminum surface achieved in aqueous H2PtCl6 solution saturated with NaF for few seconds is described. The effect of some factors such as pre-treatment time, aniline and sulfuric acid concentrations on the electropolymerization process was investigated and optimum conditions were obtained. The stability of polyaniline film on the pre-treated aluminum electrode (Al-Pt) was studied as function of the potential imposed on the electrode. For applied electrode potentials of 0.1-0.7 V, the first-order degradation rate constant, k, of polyaniline film varies between 1 × 10−6 and 2 × 10−5 s−1, and a relatively low slope (i.e. 2.1) was obtained for the plot of log k versus E. The coatings were characterized by scanning electron microscopy (SEM), and cyclic voltammetric behavior of the polyaniline-deposited Al electrode (Al/PANI) and polyaniline-deposited Al-Pt electrode (Al-Pt/PANI) in 0.1 H2SO4 solutions is described. The electrocatalytic activity of the Al-Pt/PANI electrode against para-benzoquinone/hydroquinone (Q/H2Q) and Fe(CN)63−/Fe(CN)64− redox systems was investigated and the obtained results are compared with those obtained on Al/PANI and bulk Pt electrodes.  相似文献   

5.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

6.
A new electrochemical method was proposed for the determination of thymine, which relied on the oxidation of thymine at a carbon ionic liquid electrode (CILE) in a pH 5.0 Britton-Robinson buffer solution. CILE was fabricated by using ionic liquid 1-(3-chloro-2-hydroxy-propyl)-3-methylimidazole acetate as the binder, which showed strong electrocatalytic ability to promote the oxidation of thymine. A single well-defined irreversible oxidation peak appeared with adsorption-controlled process and enhanced electrochemical response on the CILE, which was due to the presence of high conductive ionic liquid on the electrode. The reaction parameters of thymine were calculated with the electron transfer coefficient (α) as 0.27, the electron transfer number (n) as 1.23, the apparent heterogeneous electron transfer rate constant (ks) as 6.87 × 10−6 s−1 and the surface coverage (ГT) as 5.71 × 10−8 mol cm−2. Under the selected conditions the oxidation peak current was proportional to thymine concentration in the range from 3.0 to 3000.0 μM with the detection limit as 0.54 μM (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the thymine detection without the interferences of coexisting substances.  相似文献   

7.
Screen-printed electrodes (SPEs) modified with Variamine blue (VB), covalently attached to the oxidized single-walled carbon nanotubes (SWCNTs-COOH), were developed and used as chemical sensors for the detection of the reduced nicotinamide adenine dinucleotide (NADH). The Variamine blue redox mediator was covalently linked to the SWCNTs-COOH by the N,N′-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. Infrared Fourier transform (FT-IR) spectroscopy revealed the presence of the amide bands situated at 1623 cm−1 (I band), 1577 cm−1 (II band) and 1437 cm−1 (III band) demonstrating the covalent linkage of Variamine blue to SWCNTs-COOH. The heterogeneous electron transfer rate, kobs., was 13,850 M−1 s−1, and the ks and α were 0.8 s−1 and 0.56, respectively. The pH dependence was also investigated. SPEs modified with Variamine blue by using the DCC/NHS conjugation method, showed a variation of −36 mV per pH unit.A successful application was the development of a lactate biosensor obtained by the immobilization of the l-lactate dehydrogenase on the NADH sensor.  相似文献   

8.
We have studied the potential electrocatalytic activity towards the oxidation of NADH of several oxidation products of guanine and its derivative guanosine-5′-monophosphate (5′-GMP) on pyrolytic graphite electrodes (PGE). The distribution of products generated strongly depends on the experimental conditions. Our investigations focused on the oxidation products that are adsorbed on the electrode surface, are redox active and, exhibited electrocatalytic activity toward the oxidation of NADH. These compounds were electrochemically and kinetically characterized in terms of dependence of the formal potential on pH and electron transfer rate constant (ks). The voltammetric and catalytic behavior of both guanine and 5′-GMP oxidation products was compared with that of other guanine derivatives we have previously studied. Some mechanistic aspects concerning the generation of the catalysts are also discussed.  相似文献   

9.
A novel electrode material was obtained at an aluminum electrode (Al) by a simple electroless method including two consecutive procedures: (i) the electroless deposition of metallic palladium on the Al electrode surface from PdCl2 + 25% ammonia solution and (ii) the chemical transformation of deposited palladium to the palladium hexacyanoferrate (PdHCF) films in a solution containing 0.5 M K3[Fe(CN)6]. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of dopamine (DA). The effect of solution pH on the voltammetric response of DA has been investigated. A linear calibration graph was obtained over the DA concentration range 2-51 mM. The rate constant k and transfer coefficient α for the catalytic reaction and the diffusion coefficient of DA in the solution D, were found to be 4.67 × 102 M−1 s−1, 0.63 and 2.5 × 10−6 cm2 s−1, respectively. The interference of ascorbic acid was investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level stability during electrochemical experiments, making it particularly suitable for the analytical purposes.  相似文献   

10.
Hydrolytic lignin (HL) was adsorbed from an aqueous/organic solution on bare and iodine-modified gold electrode. Subsequent electrooxidation of the lignin adsorbate generated redox-active quinone-based groups in the biopolymer structure, exhibiting high reversibility during potential cycling and fast electron transfer kinetics. The presence of the chemisorbed iodine layer on the supporting gold electrode had a pronounced effect on the electrochemical properties of the final modified electrode in terms of double-layer capacitance (Cdl) and the observed surface coverage (Γobs). The high electrochemical activity in connection with low Cdl made it possible to apply the Au|I(ads)|HL electrode as a fast-responding and sensitive electrochemical sensor for NADH. When tested in the amperometric mode at a constant potential of +0.4 V vs. Ag/AgCl, the modified electrode showed a linear current-concentration response over the range of 5-120 μM with a sensitivity of 2.39 nA μM−1 cm−2 and a detection limit of 1.0 μM (S/N = 3). Kinetic studies using the rotating disk electrode revealed that the mediated oxidation of NADH on the Au|I(ads)|HL electrode was limited by the second order reaction of the analyte molecules with o-quinone moieties with a rate constant of ca. 4.7 × 102 M−1 s−1 (CNADH → 0). The modified electrode showed high resistivity against fouling and retained ca. 65% activity after storage in phosphate buffer (pH 7.4) at room temperature for 1 week.  相似文献   

11.
Meldola blue immobilized on a new SiO2/TiO2/graphite composite was applied in the electrocatalytic oxidation of NADH. The materials were prepared by the sol-gel processing method and characterized by several techniques including scanning electronic microscopy coupled to energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electronic microscopy (HRTEM). Si and Ti mapping profiles on the surface showed a homogeneous distribution of the components. Ti2p binding energy peaks indicate that the formation of Si-O-Ti linkage is presumably the responsible for the high rigidity of the matrices. The good electrical conductivity presented by the composites (5 and 11 S cm−1) can be related to a homogeneous distribution of graphite particles observed by TEM. After the materials characterization, a SiO2/TiO2/graphite electrode was prepared and some chemical modifications were performed on its surface to promote the adsorption of meldola blue. The resulting system presented electrocatalytic properties toward the oxidation of NADH, decreasing the oxidation potential to −120 mV. The proposed sensor showed a wide linear response range from 0.018 to 7.29 mmol l−1 and limit of detection of 0.008 mmol l−1. SiO2/TiO2/graphite has shown to be a promising material to be used as a suitable support in the construction of new electrochemical sensors.  相似文献   

12.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

13.
This work describes the electrochemical properties of cobalt tetra-aminophthalocyanine (CoTAPc) complex electropolymerized at the surface of multi-walled carbon nanotube (MWCNT) abrasively immobilized onto a basal plane pyrolytic graphite electrode (BPPGE). The constructed electrode displayed excellent electrocatalytic behaviour towards the oxidation of the herbicide, asulam, as evidenced by the enhancement of the oxidation peak current (∼6 times) and the shift in the oxidation potential to lower values (by ∼120 mV) in comparison with the bare BPPGE. The chronoamperometric detection of asulam which was carried out in 0.10 M phosphate buffer (pH 7.0) at a fixed potential of 0.65 V (versus Ag|AgCl) yielded excellent analytical parameters; a linear concentration range of 4.5-20 μM, a sensitivity of 241 × 10−3 μA/μM, a detection limit of 1.15 μM asulam (using the YB + 3σ criterion) and a response time of ∼2 s.  相似文献   

14.
Elanio A. Medeiros 《Fuel》2011,90(4):1696-1699
The rate constants for the quenching of biacetyl phosphorescence by a series of conjugated dienes were measured. 1,3-cyclohexadiene (kqP = 2.94 × 109 s−1 mol−1 L), 2,5-dimethyl-2,4-hexadiene (kqP = 1.91 × 109 s−1 mol−1 L), 2,4-dimethyl-1,3-pentadiene (kqP = 1.78 × 108 s−1 mol−1 L), 3-methyl-1,3-pentadiene (kqP = 1.22 × 108 s−1 mol−1 L), 2,4-hexadiene (kqP = 1.35 × 108 s−1 mol−1 L) and trans-2-methyl-1,3-pentadiene (kqP = 3.84 × 108 s−1 mol−1 L). Cyclooctene also quenched biacetyl phosphorescence but with a lower rate (kqP = 1.97 × 107 s−1 mol−1 L). Quenching was not observed with 1-methylnaphthalene. Since conjugated dienes quench biacetyl phosphorescence preferentially, this method was studied using gasoline samples with known diene composition. A good correlation was found between the rate of quenching of biacetyl by the gasoline samples and the quantity of conjugated dienes present.  相似文献   

15.
Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO2 is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 × 10−4 cm/s and (1 − α)nα is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO2.  相似文献   

16.
Cytosine plays an important role in many biological processes since it constitutes the buildings blocks of DNA and RNA. A two-step reduction of Zn2+ ions at the dropping mercury electrode in acetic buffers at pH 4 and 5 in the presence of cytosine was examined. The measurements were performed using an impedance method in a wide potential and frequency ranges.The values of the standard rate constants ks in the both studied system decrease from 3.8 × 10−3 to 2 × 10−3 cm s−1 at pH 4 and from 5.1 × 10−3 to 2.5 × 10−3 cm s−1 at pH 5. The values of the standard rate constants ks1 characterizing the stage of the first electron transfer decrease similarly. However, the values of the standard rate constants ks2 characterizing the stage of the second electron exchange decrease more markedly in the buffer at pH 4 than in the buffer at pH 5.  相似文献   

17.
Nano-γ-Al2O3 is dispersed onto the glass carbon electrode (GCE) by polishing. This nanostructured modified GCE exhibits a great enhancement to the redox responses of 3-nitrobenzaldehyde thiosemicarbazone (3-NBT). In comparison with bare GCE, 3-NBT gives a more sensitive voltammetric response because of the nanoparticle’s unique properties. The lowest detectable concentration (3σ) of 3-NBT is estimated to be 1.18 × 10−6 M (accumulation for 4 min). The linear relationship between peak current and concentration of 3-NBT holds in the range 1.0 × 10−5 M to 1.0 × 10−4 M (r = 0.9981). The electrochemical properties of 3-NBT on this modified electrode have been investigated with various electrochemical methods. The results indicate that the transference of one electron and one proton involves electrode radical reaction processes I and II, respectively. The coverage value (Γ) of 1.62 × 10−9 mol cm−2 was calculated and the electrochemical parameters, diffusion coefficient D (2.54 × 10−3 cm2 s−1, 2.03 × 10−3 cm2 s−1) and reaction rate constant ks (5.9573 s−1, 7.15 × 10−2 cm s−1) were obtained for quasi-reversible system I and irreversible system II, respectively.  相似文献   

18.
The sol-gel technique was used to construct nickel pentacyanonitrosylferrate (NiPCNF) modified composite ceramic carbon electrodes (CCEs). This involves two steps: forming a CCE containing Ni powder and then immersing the electrode into a sodium pentacyanonitrosyl-ferrate solution (electroless deposition). The cyclic voltammograms of the resulting surface modified CCE under optimum conditions show a well-defined redox couple due to the [NiIIFeIII/II(CN)5NO]0/−1 system. The electrochemical properties and stability of the modified electrode were investigated by cyclic voltammetry. The apparent electron transfer rate constant (ks) and transfer coefficient (α) were determined by cyclic voltammetry being about 1.1 s−1 and 0.55, respectively. Sulfite has been chosen as a model to elucidate the electrocatalytic ability of NiPCNF-modified CCE prepared by one- or two-step sol-gel technique. The modified electrode showed excellent electrocatalytic activity toward the SO32− electro oxidation in pH range 3-9 in comparison with CCE modified by homogeneous mixture of graphite powder, Ni(NO3)2 and Na2[Fe(CN)5NO] (one-step sol-gel technique). Sulfite was determined amperometrically at the surface of this modified electrode in pH 7. Under the optimized conditions the calibration curve is linear in the concentration range 2 μM to 2.0 mM. The detection limit (signal-to-noise is 3) and sensitivity are 0.5 μM and 13.5 nA/μM. The modified carbon ceramic electrode containing nickel pentacyanonitrosylferrate shows good repeatability, short response time, t (90%) <2 s, long-term stability (3 months), and it is renewed by simple mechanical polishing and its immersing in Na2[Fe(CN)5NO] solution. The advantages of the SO32− amperometrically detector based on the nickel pentacyanonitrosylferrate-doped CCE is high sensitivity, inherent stability at wide pH range, excellent catalytic activity and less expense and simplicity of preparation. This sensor can be used as amperometric detector in chromatographic instruments.  相似文献   

19.
This paper describes detailed comparative electrochemical and electrocatalytic behaviours of basal plane pyrolytic graphite electrodes (BPPGEs) modified with single-wall carbon nanotube (BPPGE-SWCNT) and SWCNTs functionalised with cobalt(II) tetra-aminophthalocyanine by physical (BPPGE-SWCNT-CoTAPc(mix)), chemical (BPPGE-SWCNT-CoTAPc(cov)) and electrochemical adsorption (BPPGE-SWCNT-CoTAPc(ads)) processes. SWCNT improves both solution and surface electrochemistry of CoTAPc. Electrochemical kinetics of the SWCNT-CoTAPc modified BPPGE yielded different ks values, indicative of different rate-determining steps for the cathodic and anodic reactions. Electrochemical impedance spectroscopy (EIS) analyses in the presence of [Fe(CN)6]3−/4− as a redox probe revealed that the SWCNT and SWCNT-CoTAPc(mix) films have comparable data in terms of solution resistance (Rs), electron transfer resistance (Ret), Warburg impedance (Zw) and electron-transfer rate constant (kapp). Also, these surface-confined films showed comparable electrocatalytic responses towards the detection of V-type nerve agent sulfhydryl hydrolysis products, dimethylaminoethanethiol (DMAET) and diethylaminoethanethiol (DEAET). Using the BPPGE-SWCNT-CoTAPc(mix), the estimated catalytic rate constants and diffusion coefficients were higher for DEAET than for the DMAET. Also, the detection limits of approximately 8.0 and 3.0 μM for DMAET and DEAET were obtained with sensitivities of 5.0 and 6.0 × 10−2 A M−1 for DMAET and DEAET, respectively. BPPGE-SWCNT-CoTAPc showed better potential discrimination for detection of these sulfhydryl analytes than the BPPGE-SWCNT, the latter exhibited enhanced catalytic response for the sulfhydryls than the former.  相似文献   

20.
S. Majdi  H. Heli 《Electrochimica acta》2007,52(14):4622-4629
This study investigated the electrocatalytic oxidation of alanine, l-arginine, l-phenylalanine, l-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of α and ks for the immobilized redox species were determined as 0.43 ± 0.03 and 2.47 ± 0.02 × 106 s−1, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号