首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
RuxSey nanoparticles supported on different carbon substrates were synthesized by microwave heating of ethylene glycol solutions of Ru(III) chloride and sodium selenite at different pH and Ru/Se mole ratios. The resulting catalysts were used for the electrochemical oxygen reduction reaction (ORR) in acidic solution. The electrochemical activity was highest for the supported catalyst synthesized at pH 8. Increasing the Se concentration of the catalyst up to 15 mol% increased the catalytic activity for the ORR; at this Se concentration, the activity of the catalyst was considerably higher than that observed for pure Ru catalyst synthesized at exactly the same conditions. The influence of the type of carbon support on the activity of the electrocatalyst was also investigated. Among the different supports, including carbon black (Vulcan XC-72R) (C1), and nanoporous carbons synthesized from resorcinol- (C2) and phloroglucinol-formaldehyde (C3) resins, the RuxSey catalyst supported on C3 exhibited highest activity for ORR.  相似文献   

2.
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm−3 HClO4 solution, at 25 °C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles.The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E − log j regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.  相似文献   

3.
The kinetics of the oxygen reduction reaction (ORR) were examined on a series of Pt100−xyNixPdy ternary alloys. Films were produced by electrodeposition that involved a combination of underpotential and overpotential reactions. For Pt-rich Pt100−xyNixPdy alloy films (x < 0.65) Ni co-deposition occurred at underpotentials while for Ni-rich films (x > 0.65) deposition proceeded at overpotentials. Rotating disk electrode (RDE) measurements of the ORR kinetics on Ni-rich Pt100−xyNixPdy thin films revealed up to ∼6.5-fold enhancement of the catalytic activity relative to Pt films with the same Pt mass loading. More than half of the electrocatalytic gain may be attributed to surface area expansion due to Ni dealloying. Surface area normalization based on the Hupd charge reduced the enhancement factor to a value less than 2. The most active ternary alloy film for ORR was Pt25Ni73Pd2. Comparison of the ORR on Pt, Pt20Ni80, Pt25Ni73Pd2 thin films indicate that the binary alloy is the most active with a Hupd normalized ORR enhancement factor of up to 3.0 compared to 1.6 for the ternary alloy.  相似文献   

4.
Nanocrystalline materials with chemical composition corresponding to formula Ru1−xNixO2−y (0.02 < x < 0.30) were prepared by sol-gel approach. Substitution of Ru by Ni has a minor effect on the structural characteristics extractable from X-ray diffraction patterns. The electrocatalytic behavior of Ru1−xNixO2−y with respect to parallel oxygen (oxygen evolution reaction, OER) and chlorine (chlorine evolution reaction, CER) evolution in acidic media was studied by voltammetry combined with differential electrochemical mass spectrometry (DEMS). The DEMS data indicate a significant decrease of the over-voltage for chlorine evolution with respect to that of pure RuO2. The oxygen evolution is slightly hindered. The increasing Ni content affects the electrode material activity and selectivity. The overall material's activity increases with increasing Ni content. The activity of the Ru-Ni-O oxides towards Cl2 evolution shows a distinguished maximum for material containing 10% of Ni. Further increase of Ni content results in suppression of Cl2 evolution in favor of O2 evolution. A model reflecting the cation-cation interactions resulting from Ni-doping is proposed to explain the observed trends in electrocatalytic behavior.  相似文献   

5.
This study has focused on the synthesis of novel oxygen reduction reaction (ORR) chalcogenide catalysts, with Ru partially replaced by Fe in a cluster-type RuxSey. The catalysts were obtained by thermal decomposition of Ru3(CO)12 and Fe(CO)5 in the presence of Se. As indicated by the XPS data, the composition of catalyst nanoparticles depends on the solvent used (either p-xylene or dichlorobenzene). The presence of iron in synthesized catalysts has been confirmed by both EDAX and XPS. Voltammetric activation of the catalysts results in a partial removal of iron and unreacted selenium from the surface. The ORR performance of electrochemically pre-treated catalysts was evaluated using rotating disk and ring-disk electrodes in a sulfuric acid solution. No major change in the ORR mechanism relative to the Se/Ru catalyst has been observed with Fe-containing catalysts.  相似文献   

6.
The oxygen reduction reaction (ORR) on RuxWySez is of great importance in the development of a novel cathode electrode in a polymer electrolyte membrane fuel cell (PEMFC) technology. The RuxWySez electrocatalyst was synthesised in an organic solvent for 3 h. The powder was characterised by transmission electron microscopy (TEM), and powder X‐ray diffraction (XRD). The electrocatalyst consisted of agglomerates of nanometric size (∼50–150 nm) particles. In the electrochemical studies, rotating disc electrode (RDE) and rotating ring‐disc electrode (RRDE) techniques were used to determine the oxygen reduction kinetics in 0.5 M H2SO4. The kinetic studies include the determination of Tafel slope (112 mV dec–1), exchange current density at 25 °C (1.48 × 10–4 mA cm–2) and the apparent activation energy of the oxygen reaction (52.1 � 0.4 kJ mol–1). Analysis of the data shows a multi‐electron charge transfer process to water formation, with 2% H2O2 production. A single PEMFC with the RuxWySez cathode catalysts generated a power density of 180 mW cm–2. Performance achieved with a loading of 1.4 mg cm–2 of a 40 wt% RuxWySez and 60 wt% carbon Vulcan (i.e. 0.56 mg cm–2 of pure RuxWySez). Single PEMFC working was obtained with hydrogen and oxygen at 80 °C with 30 psi.  相似文献   

7.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

8.
Composite film electrodes containing mechanically mixed MnxCu1−xCo2O4 (0 ≤ x ≤ 1) particles, carbon black Vulcan XC72R and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were formed on the glassy carbon disk surface of a rotating ring-disk electrode (RRDE) and studied for the oxygen reduction and evolution reactions (ORR and OER, respectively) in 1 M KOH solution. The electrocatalytic activities for both reactions were observed to depend strongly on the Mn content in CuCo2O4. An opposite trend was observed for the apparent and intrinsic electrocatalytic activities for the ORR; the simultaneous presence of Cu and Mn was found to be detrimental to the intrinsic charge density, but beneficial to the geometric charge density with a maximum for Mn0.6Cu0.4Co2O4. The latter was characterized by the highest total number of electrons exchanged per O2 molecule, n, close to 4, greater k1 (4e process)/k2 (2e process) ratios, and by a unique and low Tafel slope (−41 mV dec−1). The results obtained for the OER showed that the intrinsic electrocatalytic activity is determined by the number of active sites (Co4+) electrochemically formed at the oxide surface prior to the OER, from Co3+ cations. The partial substitution of Cu by Mn in CuCo2O4 was found to decrease the OER activity.  相似文献   

9.
A series of compounds La2Mo2−xWxO9 (x = 0-2) were synthesized using a freeze-dried precursor method at relatively low temperatures (673-823 K). These materials were characterised by thermogravimetric and differential thermal analysis (TG/DTA), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and dilatometric measurements. Oxygen stoichiometry was evaluated by coulometric titration and thermogravimetric analysis at 873-1273 K. The ionic and electronic conductivities of these materials were analysed by impedance spectroscopy and a Hebb-Wagner ion-blocking method under moderately reducing conditions. The presence of W6+ leads to an increase of the stability range (about 10−16 Pa for La2Mo0.5W1.5O9 at 1073 K) and prevents oxygen loss and amorphisation. Within the stability range, the electronic conductivity increases gradually as the temperature increases and as the oxygen partial pressure reduces. This indicates that the electronic transport is mainly n-type as a result of the oxygen-content decreasing in the molybdate lattice. Further reduction of the oxygen partial pressure gave rise to the decomposition of La2Mo2−xWxO9, leading to the formation of new phases with molybdenum in lower oxidation states, which further enhances the electronic conductivity. The results of the coulometric titration and the thermogravimetric studies under a dry 5% H2/Ar flow suggest that tungsten doped lanthanum molybdate materials can be used as electrolyte only at low temperature and under moderate reducing conditions.  相似文献   

10.
The crystal structure, phase transition and thermal expansion behaviors of solid solutions Sc2−xCrxMo3O12 (0≤x≤2) were investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). At room temperature, samples with x≤0.7 and x≥0.8 crystallize in orthorhombic and monoclinic structures, respectively. DSC result indicates that the phase transition of Sc0.5Cr1.5Mo3O12 from monoclinic to orthorhombic structure occurs at 203.66 °C. The linear thermal expansion coefficient of orthorhombic phases varies from −2.334×10−6 °C−1 to 0.993×10−6 °C−1 when x increases from 0.0 to 1.5. The near-zero linear thermal expansion coefficients of −0.512×10−6 °C−1 and −0.466×10−6 °C−1 are observed for compounds with x=0.5 and 0.7, respectively.  相似文献   

11.
Carbon supported RuSex (x = 0.35-2) catalysts of controlled stoichiometry and phase are synthesized via precipitating ruthenium nanoparticles on Vulcan XC-72R, then selenizing ruthenium with hydrogen annealing. The competition for Se between solid-state Ru selenization and volatile selenium hydride formation results in RuSex nanoparticles with the pyrite structure, the Ru hcp structure, or a mixture of the two. These catalysts are methanol tolerant, and catalytically active toward oxygen reduction reaction (ORR). RuSex/C (x ≅ 2) with a pyrite structure, produced at 400 °C, exhibits catalytic activity and stability superior to that of RuSex/C with a ruthenium hcp structure or a mixed phase. And this pyrite RuSex/C (x ≅ 2) catalyst yields H2O2 less than 1.5% in the technically pertinent potential range of 0.4-0.6 V (vs. Ag/AgCl). Its stability is verified in 100 CV cycles, which shows that the catalyst annealed at 400 °C is more enduring in potential cycling over 0.65 V (vs. Ag/AgCl), compared with the RuSex/C catalyst annealed at 300 °C and the RuSecluster/C reference catalyst prepared by thermolysis of Ru3(CO)12. After CV cycles, the 400 °C-annealed catalyst still exhibits a higher ORR activity than the other two catalysts.  相似文献   

12.
Li[Co1−zAlz]O2 (0 ≤ z ≤ 0.5) samples were prepared by co-precipitation and solid-state methods. The lattice constants varied smoothly with z for the co-precipitated samples but deviated for the solid-state samples above z = 0.2. The solid-state method may not produce materials with a uniform cation distribution when the aluminum content is large or when the duration of heating is too brief. Non-stoichiometric Lix[Co0.9Al0.1]O2 samples were synthesized by the co-precipitation method at various nominal compositions x = Li/(Co + Al) = 0.95, 1.0, 1.1, 1.2, 1.3. XRD patterns of the Lix[Co0.9Al0.1]O2 samples suggest the solid solution limit is between Li/(Co + Al) = 1.1 and 1.2. Electrochemical studies of the Li[Co1−zAlz]O2 samples were used to measure the rate of capacity reduction with Al content, found to be about −250 ± 30 (mAh/g)/(z = 1). Literature work on Li[Ni1/3Mn1/3Co1/3−zAlz]O2, Li[Ni1−zAlz]O2 and Li[Mn2−yAly]O4 demonstrates the same rate of capacity reduction with Al/(Al + M) ratio. These studies serve as baseline characterization of samples to be used to determine the impact of Al content on the thermal stability of delithiated Li[Co1−zAlz]O2 in electrolyte.  相似文献   

13.
The La2−xAxMo2O9−δ (A = Ca2+, Sr2+, Ba2+ and K+) series has been synthesised as nanocrystalline materials via a modification of the freeze-drying method. The resulting materials have been characterised by X-ray diffraction (XRD), thermal analysis (TG/DTA, DSC), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The high-temperature β-polymorph is stabilised for dopant content x > 0.01. The nanocrystalline powders were used to obtain dense ceramic materials with optimised microstructure and relative density >95%. The overall conductivity determined by impedance spectroscopy depends on both the ionic radius and dopant content. The conductivity decreases slightly as the dopant content increases in addition a maximum conductivity value was found for Sr2+ substitution, which show an ionic radii slightly higher than La3+ (e.g. 0.08 S cm−1 for La2Mo2O9 and 0.06 S cm−1 for La1.9Sr0.1Mo2O9−δ at 973 K). The creation of extrinsic vacancies upon substitution results in a wider stability range under reducing conditions and prevents amorphisation, although the stability is not enhanced significantly when compared to samples with higher tungsten content. These materials present high thermal expansion coefficients in the range of (13-16) × 10−6 K−1 between room temperature and 753 K and (18-20) × 10−6 K−1 above 823 K. The ionic transport numbers determined by a modified emf method remain above 0.98 under an oxygen partial pressure gradient of O2/air and decreases substantially under wet 5% H2-Ar/air when approaching to the degradation temperature above 973 K due to an increase of the electronic contribution to the overall conductivity.  相似文献   

14.
Y2−xLaxMo3O12 (x=0, 0.5, 2) ceramics were successfully synthesized by the solid state reaction method. The microstructure, composition and thermal expansion property of the resulting samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and dilatometry. Results indicate that the Y1.5La0.5Mo3O12 crystallizes in monoclinic Tb2Mo3O12-type structure and it is non-hygroscopic. The Y1.5La0.5Mo3O12 ceramic is denser than the Y2Mo3O12 and La2Mo3O12 ceramics, and its relative density can reach 94.12% of the theoretical value. Most importantly, it shows almost zero thermal expansion and its thermal coefficient is 0.87×10−6 K−1 from 178 °C to 600 °C. Y2Mo3O12 ceramic shows negative thermal expansion whereas La2Mo3O12 ceramic shows positive thermal expansion, their thermal expansion coefficients being−12.06×10−6 K−1 and 8.88×10−6×10−6 K−1, respectively.  相似文献   

15.
In this paper effects of Ca and Mg substitution on oxygen sensing properties of hot spot based Eu123 rods are reported. Eu1−xCaxBa2Cu3O7−δ (x=0.2–0.5) and Eu1−yMgyBa2Cu3O7−δ (y=0.2–0.5) ceramics were synthesized from oxide powders using the standard solid state method and fabricated into short rods. For Ca-substituted rods, after appearance of a visible hot spot, a constant current plateau in IV curve was formed. The output current response of the rod in periodically changing pO2 between 20% and 100% showed improved stability and reproducibility for x=0.4 compared to x=0.2. Improved oxygen absorption and desorption time was observed for x=0.4 compared to previously reported unsubstituted rod. On the other hand, for Mg-substituted rods the IV behavior after formation of hot spot showed a negative slope. Faster absorption time of 3.0 s and desorption time of 6.9 s were observed for y=0.4 compared to y=0.2. The improved output current stability, reproducibility and response time is suggested to be due to changes in oxygen activation energy and increased hole concentration as a result of Ca2+/Mg2+substitutions. The Mg-substituted rods showed better performance compared to Ca-substituted rods possibly due to higher porosity and vacancy concentration.  相似文献   

16.
Several Rh- and Ru-based carbon-supported chalcogenide electrocatalysts were evaluated as oxygen-depolarized cathodes for HCl electrolysis applications. The roles of both crystallinity and morphology of the electrocatalysts were explored by investigating several synthetic processes for materials, specifically patented E-TEK methods and the non-aqueous method. The activity of the electrocatalysts for ORR was evaluated via RDE studies in 0.5 M HCl, and compared to state of the art Pt/C and Rh/C systems. RhxSy/C, CoxRuySz/C, and RuxSy/C materials synthesized from the E-TEK methods exhibited appreciable stability and activity for ORR under these conditions. The amorphous non-aqueous moieties, while exhibiting little depolarization due to the presence of high concentrations of Cl in the RDE studies, were unsuitable for operation in a true ODC HCl electrolyzer cell because of irreversible dissolution resulting from the high concentration (∼5 M) of HCl. In contrast, the Ru-based materials from the E-TEK methods were unaffected by the depolarizing conditions of an uncontrolled shutdown. These Ru-based electrocatalysts, being on the order of seven times less expensive than the state of the art RhxSy material, may prove to be of economic benefit to the HCl electrolysis industry.  相似文献   

17.
The influence of iron doping level in Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0-1.0) (BSCF) oxides on their phase structure, oxygen nonstoichiometry, electrical conductivity, performance as symmetrical cell electrode and oxygen permeating membranes was systematically investigated. A cubic perovskite structure was observed for all the compositions with the presence of iron. The increase of iron doping level resulted in the decrease of the lattice constant, room-temperature oxygen nonstoichiometry, total electrical conductivity, and the increase of area specific resistance (ASR) as cathode with samaria doped ceria electrolyte. However, promising cathode performance with an ASR as low as 0.613 Ω cm2 was still obtained at 600 °C for Ba0.5Sr0.5FeO3−δ (BSF). The ceramic membranes composing of BSCF with various iron doping level are all oxygen semi-permeable at elevated temperatures. The increase of iron doping level resulted in the decrease of oxygen permeation flux from JO2 = 2.28 μmol cm−2 s−1 (STP) for Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) to ∼0.45 μmol cm−2 s−1 (STP) at 900 °C for BSF (y = 1.0) with the same membrane thickness of 1.1 mm, alongside with the change of the rate-determination step from the oxygen surface exchange to the slow oxygen bulk diffusion. The formation of composite oxide with a proper electronic conducting phase and the thin film technology are important for their prospective application as cathode in IT-SOFCs and oxygen permeating membrane, respectively.  相似文献   

18.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

19.
Tantalum (oxy)nitrides (TaOxNy) have been investigated as new cathodes for polymer electrolyte fuel cells without platinum. TaOxNy films were prepared using a radio frequency magnetron sputtering under Ar + O2 + N2 atmosphere at substrate temperatures from 50 to 800 °C. The effect of the substrate temperature on the catalytic activity for the oxygen reduction reaction (ORR) and properties of the TaOxNy films were examined. The catalytic activity of the TaOxNy for the ORR increased with the increasing substrate temperature. The ORR current density at 0.4 V vs. RHE on TaOxNy prepared at 800 °C was approximately 20 times larger than that on TaOxNy prepared at 50 °C. The onset potential of the TaOxNy for the ORR was obtained at the ORR current density of −0.2 μA cm−2. The onset potential of the TaOxNy prepared at 800 °C was ca. 0.75 V vs. RHE. The X-ray diffraction patterns revealed that Ta3N5 structure grew as the substrate temperature increased. While, the ionization potentials of all specimens were lower than that of Ta3N5, and decreased with the increasing substrate temperature. The TaOxNy which had Ta3N5 structure and lower ionization potential might have a definite catalytic activity for the ORR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号