首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different shapes (nanosphere or nanorod) of gold nanoparticles (Au-NPs) were synthesized with and without ultrasonic irradiation in the presence of citric acid. Spherical-shaped and rod-shaped Au-NPs showed different surface plasmon resonance (SPR) absorption bands. The Au-NPs with different shapes were immobilized on a monolayer of 3-aminopropyltriethoxysilane (APS) coated on an indium-tin oxide (ITO) electrode. The potential dependence of the SPR band of different shaped Au-NPs in an aqueous solution was explored. The SPR band and intensity changes of the Au-NPs were found to depend on the applied potential. The spherical-shaped and rod-shaped Au-NPs showed different SPR absorption behaviors when potential was applied. These behavior changes were interpreted as the result of the potential-induced changes of the local dielectric environment around the nanoparticles due to molecular absorption/desorption and the charging/discharging of the particles.  相似文献   

2.
This paper demonstrates the use of the new Iyer/Pickering/Zamanzadeh/Al-Faqeer (IPZA) analysis to determine the effect of the iodide surface coverage (θI) on the hydrogen surface coverage (θH) and the rate constants of the hydrogen evolution reaction (HER) and hydrogen absorption reaction (HAR). Iodide ions have an inhibiting effect on the HER but they enhance the HAR. The IPZA analysis was used to determine θI in addition to the usual parameters: hydrogen discharge (k1) and recombination (k2) rate constants, hydrogen kinetic-diffusion constant (k) and θH. Inclusion of the iodide coverage is important as shown by a comparison with literature values that were obtained using the original IPZ analysis, which does not include the θI parameter. The θI values from the IPZA analysis were within reasonable agreement with θI values measured using the electrochemical quartz crystal microbalance (EQCM) and θI values calculated from the measured corrosion current densities before and after adding iodide to the electrolyte.  相似文献   

3.
This paper demonstrates the use of the new Iyer/Pickering/Zamanzadeh/Al-Faqeer (IPZA) analysis to determine the effect of the iodide surface coverage (θI) on the hydrogen surface coverage (θH) and the rate constants of the hydrogen evolution reaction (HER) and hydrogen absorption reaction (HAR). Iodide ions have an inhibiting effect on the HER but they enhance the HAR. The IPZA analysis was used to determine θI in addition to the usual parameters: hydrogen discharge (k1) and recombination (k2) rate constants, hydrogen kinetic-diffusion constant (k) and θH. Inclusion of the iodide coverage is important as shown by a comparison with literature values that were obtained using the original IPZ analysis, which does not include the θI parameter. The θI values from the IPZA analysis were within reasonable agreement with θI values measured using the electrochemical quartz crystal microbalance (EQCM) and θI values calculated from the measured corrosion current densities before and after adding iodide to the electrolyte.  相似文献   

4.
The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 × 10−10 mol cm−2 was estimated for films grown in our experimental conditions.  相似文献   

5.
Jichun You  Yonggui Liao  Zhaohui Su  Lijia An 《Polymer》2008,49(20):4456-4461
Thin films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blend can phase separate upon heating to above its critical temperature. Temperature dependence of the surface composition and morphology in the blend thin film upon thermal treatment was studied using in situ X-ray photoelectron spectroscopy (XPS) and in situ atomic force microscopy (AFM). It was found that in addition to phase separation, the blend component preferentially diffused to and aggregated at the surface of the blend film, leading to the variation of surface composition with temperature. At 185 °C, above the critical temperature, the amounts of PMMA and SAN phases were comparable. At lower temperatures PMMA migrated to the surface, leading to a much higher PMMA surface content than in the bulk. The migration and preferential segregation of a blend component in thin films demonstrated here are responsible for the great difference between in situ and ex situ experimental (not real quenching or annealing) results of polymer blend films, and help explain the slow kinetics of surface phase separation at early stage for blend thin films reported in literature. This is significant for the control of surface properties of polymer materials.  相似文献   

6.
In situ wet-cell transmission electron microscopy (TEM) technology enables direct observation of nanomaterials in a fully hydrated environment with high spatial and temporal resolution, which can be used to address a wide range of scientific problems. In this paper, the motions of approximately 5-nm sized gold nanoparticles in an aqueous solution are studied using the wet-cell TEM technology. It is observed that gold nanoparticles can be either in a single particle or cluster forms, and dynamic displacement and rotation motions are observed for both forms in the solution. Under electron beam irradiation, nanoparticles in some clusters gradually fused together; sometimes they also showed dramatic growth behavior. Mechanisms for the motion and growth of the particles/clusters are discussed.  相似文献   

7.
Synthesis of poly(N-methylaniline) (PNMA) on pure iron and Pt electrodes was carried out from aqueous 0.3 M oxalic acid solution containing 0.1 M N-methylaniline (NMA) by potentiodynamic and galvanostatic techniques. It was found that when compared to polyaniline (PAni) and its ring- and N-ethyl-substituted derivatives, PNMA can be electrosynthesized with lower upper scanning potential (upper potential limit, Eupp) of 0.8 V vs. saturated calomel electrode (SCE) on an Fe electrode. PNMA coatings were characterized by electrochemical, scanning electron microscopy (SEM) and FTIR techniques. Linear anodic potentiodynamic polarization results proved that increasing the acidity of the polymerization solution causes more effective protection against corrosion in 0.5 M H2SO4 medium for PNMA. Moreover, PNMA exhibited similar protective properties with PAni under the same corrosion test conditions. Tafel test results reveal that the PNMA coating appears to enhance protection for iron in 0.5 M NaCl and 0.1 M HCl solutions. According to EIS results, the PNMA coating is able to offer protection to Fe electrodes in NaCl compared to that in HCl medium over a long immersion period.  相似文献   

8.
An in situ electrochemical atomic force microscopy (EC-AFM) cell was developed to study surface and dimensional changes of individual LixCoO2 crystals during lithium de-intercalation. Discrete Li2CO3 particles having 50-250 nm in diameter and 5-15 nm in height were observed on the surface of stoichiometric LiCoO2 crystals and they were shown to gradually dissolve into the LiPF6-containing electrolyte. The dimensional change of individual LixCoO2 crystals along the chex. axis was monitored in situ during lithium de-intercalation. Evidence of surface instability or structural instability was not found in LixCoO2 single crystals upon de-intercalation to 4.2 V versus Li.  相似文献   

9.
Electro-oxidation of dimethyl ether (CH3OCH3, denoted as DME below) on Pt polycrystalline electrode has been investigated by electrochemical and in situ infrared (IR) measurements in acid solutions. A reaction intermediate species, (CH3OCH2-)ad, has been observed in the low potential region as an initial product for dehydrogenation process of DME on Pt electrode surface. This species is subsequently decomposed to adsorbed carbon monoxide (CO) and finally oxidized to carbon dioxide (CO2) in higher potential region. The time-resolved IR measurement is employed to follow the transient process of the formation and decomposition of the intermediate on Pt electrode surface. Based on these electrochemical and IR spectroscopic results, a reaction scheme for DME electro-oxidation process is proposed.  相似文献   

10.
Stress corrosion cracking (SCC) raises a lot of questions concerning complexity of stacked physical mechanisms. Synergy between electrochemical processes and mechanical field near the crack tip is now recognized. However, the influence of mechanical behaviour on corrosion processes is not well established and only few works dealt with this effect. Consequently, it seems to be necessary to determine the influence of the plastic strain on the surfaces reactivity in aqueous mediums. The great part of this work was devoted to the development of an electrochemical cell on a bench of mechanical test in order to carry out in situ measurements of current density. Three levels of interaction have been discussed taking into account the different expression of plastic deformation (dislocation density and distribution, slip bands emergence, stress field) in order to study the effect of mechanical state on dissolution, on passivation processes, and on stability of oxide film of polycrystalline nickel in H2SO4 solution.  相似文献   

11.
The iron oxide electrode was prepared from thermal oxidation of iron at 600 °C for 3 h in air atmosphere. This electrode with the structure of Fe3O4 and α-Fe2O3 showed the response of photoanodic current to the light with wavelength shorter than 600 nm. The band gap energy of this electrode was 1.99 eV. The onset potential of distinct steady photocurrent and also the flatband potential were 0.80 and 0.09 V vs. Ag/AgCl, respectively, in 0.1 M HNO3 aqueous solution. The cell consisting of the iron oxide photoanode in HNO3-Pb(NO3)2 and the graphite cathode in H2SO4-Ce(SO4)2 caused the PbO2 deposit on the surface of the former electrode due to visible light irradiation without application of voltage. By holding the potential of this electrode at more positive value than 0.90 V, the photoanodic removal rate of Pb2+ in HNO3-Pb(NO3)2 solution was higher than that observed when Ce4+ was used as electron acceptor.  相似文献   

12.
Impedance spectroscopy and in situ STM methods have been used for investigation of the camphor and 2,2′-bipyridine (2,2′-BP) adsorption at the electrochemically polished Bi(1 1 1) electrode from weakly acidified Na2SO4 supporting electrolyte solution. The influence of electrode potential on the adsorption kinetics of camphor and 2,2′-BP on Bi(1 1 1) has been demonstrated. In the region of maximal adsorption, i.e. capacitance pit in the differential capacitance versus electrode potential curve, the heterogeneous adsorption and diffusion steps are the rate determining stages for camphor and 2,2′-BP adsorption at the Bi(1 1 1) electrode. It was found that for camphor | Bi(1 1 1) interface the stable adsorbate adlayer detectable by using the in situ STM method has been observed only at the positively charged electrode surface, where the weak co-adsorption of SO42− anions and camphor molecules is possible. At the weakly negatively charged Bi(1 1 1) electrode surface there are only physically adsorbed camphor molecules forming the compact adsorption layer. The in situ STM data in a good agreement with impedance data indicate that a very well detectable 2,2′-BP adsorption layer is formed at Bi(1 1 1) electrode in the wide region of charge densities around the zero charge potential.  相似文献   

13.
In this article, the electrodeposition of Bi on Au(1 1 1) surface in the underpotential region in BMIBF4 ionic liquid containing BiCl3 is studied by cyclic voltammetry and in situ scanning tunneling microscopy (STM). The cyclic voltammogram shows several cathodic and anodic peaks associated with underpotential deposition (UPD) of Bi and dissolution of the UPD deposit, respectively, in the potential region between −0.38 and −0.7 V versus Pt quasi-reference electrode. In situ STM results indicate there is a BiCl3 precursor adsorption stage prior to the Bi UPD. The adsorption of BiCl3 leads to the formation of unique hexagonal and trigonal supramolecular assembly with a Au(1 1 1)(10 × 10) structure. The initial stage of Bi UPD proceeds with the formation of Au(1 1 1)(7 × 7) R21.8° adlayer structure composed of Bi trigonal clusters at −0.5 V. A structural transformation occurred at −0.6 V resulting in a unique “zipper-like” double-chain pattern composed of well-aligned Bi trigonal clusters which can be denoted by Au(1 1 1)(5 × 25√3/3) structural model. The trigonal clusters composed of six Bi atoms seem to be the main characteristic elemental units of Bi UPD adlayer regardless of underpotential shift. These features are dramatically different from those observed in Bi(III)-containing acidic aqueous solutions as well as in chloroaluminated ionic liquid, but are similar to those of Sb UPD in BMIBF4 ionic liquid, which reveals profound solvent effects on the electrodeposition of semimetals.  相似文献   

14.
The structural evolution of thiolate-protected nanoparticles of gold, silver, and their alloys with various Au/Ag ratios (3:1, 1:1, and 1:3) upon heating was investigated by means of in situ synchrotron radiation X-ray diffraction. The relationships between the coalescence and composition of nanoparticles, as well as the surfactant reactions, were clarified. Experimental results show that there existed a critical temperature ranging from 120°C to 164°C, above which the tiny broad X-ray diffraction peaks became sharp and strong due to particle coalescence. The coalescence temperatures for alloy nanoparticle deposits were clearly lower than those for pure metals, which can be ascribed to the rivalry between the thermodynamic effect due to alloying and the interactions between surface-assembled layers and the surface atoms of the nanoparticles. The strong affinity of thiolates to Ag and thus complex interactions give rise to a greater energy barrier for the coalescence of nanoparticles into the bulk and subsequent high coalescence temperature. The influences of particle coalescence on the optical and electrical properties of the nanoparticle deposits were also explored.  相似文献   

15.
Qian Cheng 《Electrochimica acta》2010,55(27):8273-8279
Pt tetrahexahedral (Pt-THH) nanocrystals enclosed with 24 {h k 0} facets, Pt nanothorns (Pt-Thorn) with a high surface density of atomic steps, and congeries of Pt nanoparticles (Pt-NP) were prepared and served as catalysts to study the electrocatalytic reduction of both adsorbed and solution nitric oxide. The structure sensitivity for the reduction of a saturated NO adlayer on the Pt nanocrystals (NCs) of different shape was studied by cyclic voltammetry (CV) and in situ FTIR spectroscopy in sulphuric acid solutions. The results revealed that two types of NO adsorbates can be reduced independently at separated potentials, i.e. the reduction of linear bonded NO (NOL) on the Pt-NP electrode gives rise to a current peak at −0.01 V (vs. SCE), while the bridge adsorbed NO (NOB) yields a current peak at −0.08 V. The in situ SNIFTIRS results confirmed the assignment of NO adsorbates, i.e. the NOB species yielding a IR absorption bipolar band with its negative-going peak at 1636 cm−1 and positive-going peak around 1610 cm−1, and the NOL species giving rise to a bipolar band with its negative-going peak at 1809 cm−1 and positive-going peak around 1720 cm−1. It has determined that the NOL species can be preferentially formed on the Pt NCs with open surface structure, i.e. the more open the surface structure of the Pt NCs, the larger the relative quantity of NOL versus NOB. It has also revealed that the Pt NCs with a high surface density of atomic steps exhibit superior electrocatalytic activity for the reduction of solution NO species. The steady-state current density of NO reduction on Pt-THH NCs is 7.5-12 times as large as that on Pt-NP, and that on Pt-Thorn is 2.5-4 times of that on Pt-NP in the reduction potential region of electrochemical dynamic control.  相似文献   

16.
Electrochemical behavior of oxo-bridged dinuclear ruthenium(III) complex ([(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+) has been studied in aqueous solution (KCl 0.5 mol L−1) by both cyclic and rotating disk electrode (RDE) voltammetry in order to identify and elucidate the reaction mechanism. Modified electrode containing the oxo-bridged ruthenium complex incorporated into a cation-exchange polymeric film deposited onto platinum electrode surface was studied. Cyclic voltammetry at the modified electrode in KCl solution showed a single-electron reduction/oxidation of the couple RuIII-O-RuIII/RuIII-O-RuIV. The modified electrode exhibited electrocatalytic property toward hydrogen peroxide oxidation in KCl solution with a decrease of the overpotential of 340 mV compared with the platinum electrode. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the hydrogen peroxide oxidation. The first at low overpotential region there is no significant change in the Tafel slope (∼0.130 V dec−1) with varying peroxide concentration. The second region at higher overpotential the slope values (0.91–0.47 V dec−1) were depended on the peroxide concentration. The apparent reaction order for H2O2 varies from 0.16 to 0.50 in function of the applied potential. The apparent reaction order (at constant potential) with respect to H+ concentration of 10−5 to 10−1 mol L−1 was 0.25. A plot of the anodic current vs. the H2O2 concentration for chronoamperometry (potential fixed = +0.61 V) at the modified electrode was linear in the 1.0 × 10−5 to 2.5 × 10−4 mol L−1 concentration range.  相似文献   

17.
Iron is a key element in the development of Co-free AB5-type hydrogen storage alloys. The aim of this work is to systematically investigate the effects of Fe and Co on the electrochemical properties of LaNi4.6−xMn0.4Mx (M = Fe or Co, x = 0, 0.25, 0.5 and 0.75) hydrogen storage alloys under relatively low temperatures (273, 253 and 233 K). The results showed that substitution of Fe for Ni reduced the low temperature electrochemical performance much more seriously than that of Co. Exchange current density (I0), charge-transfer resistance (Rct) and hydrogen diffusion coefficient (D) were determined based on the study of linear polarization, electrochemical impedance spectrum (EIS) and galvanostatic discharge, respectively. Both the hydrogen diffusion in the bulk of alloy particles and the electrochemical reaction at the alloy electrolyte interface were found to be greatly limited as the decrease of temperature. During the EIS analysis, interestingly, we found that the semicircle in the high frequency region increased dramatically with the decrease of temperature. The electrochemical process corresponding to this semicircle was proposed to be related to the oxide layer on the surface of alloy particles. Novel explanations of EIS response in metal hydride electrodes were proposed accordingly.  相似文献   

18.
Nanoscale patterns with high conductivity based on silver nanoparticle inks were fabricated using spray coating method. Through optimizing the solution content and spray operation, accurate nanoscale patterns consisting of silver nanoparticles with a square resistance lower than 1 Ω /cm2 were obtained. By incorporating in situ sintering to substitute the general post sintering process, the time consumption could be significantly reduced to one sixth, qualifying it for large-scale and cost-effective fabrication of printed electronics. To testify the application of spray-coated silver nanoparticle inks, an inverted polymer solar cell was also fabricated, which exhibited a power conversion efficiency of 2.76%.  相似文献   

19.
Efficiency of cathodes for water electrolysis decreases after shut-downs due to corrosion at open-circuit potential. In the present work the effect of prepolarization at various potentials on hydrogen entry into iron during cathodic potential sweeps was studied by the measurement of the hydrogen permeation rate (HPR) through a 35-μm thick iron membrane in 0.1 M NaOH without and with EDTA or Na2MoO4 at 25 °C. Two types of the enhanced hydrogen entry at low cathodic polarizations were distinguished: one after prepolarization at low cathodic or low anodic potentials, and another after prepolarization at high anodic potentials. It is suggested that both types can be explained by acidification at the metal surface, the former due to anodic oxidation of iron, and the latter due to cathodic reduction of oxide layer (mainly of Fe3O4). XPS analysis revealed the presence of hydrated Fe-O species of unidentified valence. EDTA and Na2MoO4 increased the efficiency of hydrogen entry (jH/jc ratio), and molybdates also strongly increased cathodic currents of HER. Some of the effects of these additives can be explained in terms of their effect on surface layers.  相似文献   

20.
The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag+ or Cd2+ ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号