首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new nanocomposite, obtained from the intercalation of the cyclic ether 12-Crown-4 into MoS2, Li0.32MoS2(12-Crown-4)0.19, is described. The laminar product has an interlaminar distance of 14.4 Å. The electrical conductivity of the nanocomposite varies from 2.5 × 10−2 to 4.3 × 10−2 S cm−1 in the range 25-77 °C, being about four times higher than the analogous poly(ethylene oxide) (PEO) derivative at room temperature. The electrochemical step-wise galvanostatic intercalation or de-intercalation of lithium, leading to LixMoS2(12-Crown-4)0.19 with x in the range 0.07-1.0, indicates a Li/Li+ pair average potential of 2.8 V. The electrochemical lithium diffusion coefficients in the crown ether intercalates, determined by galvanostatic pulse relaxation between 15 and 37 °C at different lithium intercalation degrees, are higher than those of the PEO derivatives under similar conditions, being however the diffusion mechanism rather more complex. The variation of both, the lithium diffusion activation enthalpy and the quasi-equilibrium potentials, with the lithium content shows there are two different limit behaviors, at low and high lithium intercalation degree, respectively. These features are discussed by considering the high stability of the Li-crown ether complex and the different chemical environments found by lithium along the intercalation process.  相似文献   

2.
Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion® 112 was used as reference material. DMFC tests were also performed at 50 °C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion® 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion® 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%.  相似文献   

3.
A series of novel fluorinated poly(aryl ether)s containing phthalazinone moieties (FPPEs) have been prepared by a modified synthetic procedure for optical waveguide applications. The obtained random copolymers exhibited excellent solubility in polar organic solvents, high glass transition temperatures (Tgs: 185-269 °C), good thermal stabilities (the temperatures of 1% weight loss: 487-510 °C) and good optical properties. By adjusting the feed ratio of the reactants, the refractive indices of TE and TM modes (at 1550 nm) could be well controlled in the range of 1.575-1.498 and 1.552-1.484, respectively. The optical losses of the FPPEs exhibited relatively low values (less than 0.27 dB/cm at 1310 nm). Additionally, the thermo-optic coefficient (dn/dT) values of the FPPEs at 1310 nm and 1550 nm (TE mode) ranged from −0.97 × 10−4 °C to −1.33 × 10−4 °C and from −0.96 × 10−4 °C to −1.29 × 10−4 °C, respectively.  相似文献   

4.
Xianfeng Li 《Polymer》2005,46(15):5820-5827
A series of sulfonated poly(ether ether ketone ketone)s (SPEEKK)s based membranes have been prepared and evaluated for proton exchange membranes (PEM). The membranes show very good thermal and mechanical stabilities. The structures of membranes were studied with AFM. The membranes show very good proton conductive ability (25 °C: 0.007-0.04 s/cm) and methanol resistance (25 °C: 7.68×10−8 to 5.75×10−7 cm2/s). The methanol diffusion coefficients of membranes are much lower than that of Nafion (2×10−6 cm2/s). The SPEEKKs membranes show very good respective in direct methanol fuel cells (DMFC) usages.  相似文献   

5.
A new series of six-member sulfonated copolyimides (SPIs) were prepared by one-step solution copolycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 1,2-dihydro-2-(4-amino-2-sulfophenyl)-4-[4-(4-amino-2-sulfonphenoxy)-phenyl] (2H)phthalazin-1-one (S-DHPZDA), 4,4′-bis(4-aminophenoxy) biphenyl (BAPB) and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-(aminophenoxyl)phenyl)](2H)phthalazin-1-one (DHPZDA). The sulfonation degree (DS) of the SPIs was controlled by the mol ratio of the sulfonated diamine and non-sulfonated diamine. The obtained SPI membranes had excellent thermal stability, high mechanical property and proton conductivity as well as low methanol permeability. The tensile strength of the SPI membranes was ranging from 54.7 to 98.1 MPa, which was much higher than that of Nafion®. The SPI membranes exhibited high proton conductivity (σ) and low methanol permeability ranged from 10−3 to 10−2 S/cm and 10−8 to 10−7 cm2/s depending on the DS of the polymers, respectively.  相似文献   

6.
Poly(ether ether ketone) (PEEK)/multi-wall carbon nanotube (MWNT) composites containing up to 17 wt% filler were prepared using a twin screw extruder. Transmission electron microscopy (TEM) images reveal that the MWNTs were homogeneously dispersed in the PEEK matrix. Linear viscoelastic measurements show that both complex viscosity and moduli increase with increasing MWNT concentration. The storage modulus, G exhibits a dramatic seven order increase in magnitude around 1 wt%, leading to a solid-like low-frequency behaviour at higher loadings; the effect can be attributed to network formation at a rheological percolation threshold. Rheotens measurements show that the melt strength also increases significantly on addition of nanotubes, however, the drawability decreases. An analytical Wagner model was used to calculate the apparent elongational viscosity over a wide range of elongational rates, and to reveal significant increases on addition of MWNTs, with a similar threshold behaviour. The electrical response is also dominated by percolation effects, increasing by nearly 10 orders of magnitude from 10−11 to 10−1 S/cm, on the addition of only 2 wt% MWNTs. In contrast, the thermal conductivity and tensile elastic modulus of the composites increased linearly with nanotube content, rising by 130% and 50%, at 17 wt% MWNTs, respectively.  相似文献   

7.
New proton exchange membranes were prepared and evaluated as polymer electrolytes for a proton exchange membrane fuel cell (PEMFC). Two types of fluorinated poly(arylene ether)s (FPAEs) were synthesized by nucleophilic aromatic substitution of decafluorobiphenyl (DFBP) with 4,4′-(hexafluoroisopropylidene)diphenol (HFDP) and bisphenol-A (BPA). The FPAEs so prepared were converted into proton exchange polymers by sulfonation with fuming sulfuric acid (30% SO3). The FPAEs and sulfonated-fluorinated poly(arylene ether)s (S-FPAEs) with various sulfonation levels were characterized using NMR, thermogravimetric analysis (TGA) and back titration, and then successfully evaluated as proton exchange membranes (PEM) with unit cell operation. power output measurements of S-DFBP-HFDP carried out at a cell temperature of 80 °C. They exhibited a maximum power density of 425.5 mW/cm2 at 1150 mA/cm2.  相似文献   

8.
A novel ionic liquid of trifluoroacetic propylamine, i.e., [CH3CH2CH2NH3+] [CF3COO] (TFAPA), was synthesized from trifluoroacetic acid and propylamine. The ionic liquid of TFAPA was used to prepare anhydrous, conducting membranes based on polymers of sulfonated poly (ether ether) ketone (SPEEK) or polyvinylidenefluoride (PVDF). The ionic conductivity and mechanical strength of the composite membranes were investigated at elevated temperatures and under anhydrous conditions. Conductivity of 0.030 S/cm was achieved with TFAPA at 180 °C, and of 0.019 S/cm with a membrane containing 70% (wt) TFAPA in SPEEK with a sulfonation degree of 86% at 160 °C. Increasing either ionic liquid content or temperature reduced the mechanical strength of the composite membrane. Efforts were made to improve the strength of TFAPA/SPEEK composite membranes by cross-linking the SPEEK, which led to some strength enhancement at 110 °C and 130 °C.  相似文献   

9.
Juan Yang  Abhishek Roy 《Polymer》2008,49(24):5300-5306
tert-Butylphenyl-terminated disulfonated poly(arylene ether sulfone) random copolymers with a sulfonation degree of 35 mol% (BPS35) and controlled molecular weights (Mn), 20-50 kg mol−1, were successfully prepared by direct copolymerization of the two activated halides, 4,4′-dichlorodiphenyl sulfone (DCDPS) and 3,3′-disulfonate-4,4′-dichlorodiphenyl sulfone (SDCDPS) with 4,4′-biphenol and the endcapper, 4-tert-butylphenol. Dilute viscosity measurements of the BPS35 random copolymers were successfully conducted in NMP containing various concentrations of LiBr from 0.01 to 0.2 M and mostly at 0.05 M according to the measured theory. The effects of salt concentration and molecular weights of the copolymers on the viscometric behavior were studied and compared with published data for sulfonated polystyrene. The charge density parameter (ξ) for the BPS35 copolymers was determined to be smaller than 1, suggesting that no counterion condensation occurs. Studies of the effect of ionic strength (I) on the intrinsic viscosities ([η]) under theta condition were obtained by plotting [η] vs. I−1/2 and extrapolating to infinite ionic strength. For salt-free BPS35 solutions, the viscometric behavior was shown to fit well with the Liberti-Stivala equation, providing a way to determining intrinsic viscosity when the copolymer charge is fully screened. Intrinsic viscosity and molecular weight characterization of BPS35 copolymers by SEC and static light scattering are also presented. The results are very useful for characterizing polymeric electrolyte membrane (PEM) for fuel cells, reverse osmosis and ionic transducer membranes.  相似文献   

10.
Wholly aromatic poly(aryl ether ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to ether linkage (m-SPAEEN), intended for fuel cells applications as proton conducting membrane materials, were prepared via nucleophilic substitution polycondensation reactions. The incorporation of rigid naphthalene structure with meta-sulfonic acid groups was with the intent of improving the aggregation of hydrophilic and hydrophobic domains and to increase the acidity and conductivities. m-SPAEEN copolymers were readily synthesized by potassium carbonate mediated nucleophilic polycondensation reactions of commercially available monomers: 2,6-difluorobenzonitrile (2,6-DFBN), 2,8-dihydroxynaphthalene-6-sulfonate sodium salt (2,8-DHNS-6), and 4,4′-biphenol (4,4′-BP) in dimethylsulfoxide (DMSO) at 160-170 °C. The sulfonic acid group content (SC), expressed as a number per repeat unit of polymer, ranged from 0 to 0.6 and was readily controlled by changing the feed ratio of 2,8-DHNS-6 to 2,6-DFBN. High thermal stability of m-SPAEEN copolymers was indicated by observed glass transition temperatures (Tgs) ranging from 223 to 335 °C in sodium salt form and from 230 to 260 °C in acid form (m-SPAEENH) and decomposition temperatures (Td)s over 250 °C in acid form and over 350 °C in sodium form in both nitrogen and air. All m-SPAEENH copolymers exhibited reasonable flexibility and tensile strength in the range of 39-78 MPa, indicating they were mechanically stronger than Nafion®117, which had an approximate value of 10 MPa under the same test conditions. As expected, m-SPAEENH copolymers showed considerably reduced moisture absorption compared to previously prepared sulfonated hydroquinone based poly(aryl ether nitrile). m-SPAEENH copolymers also showed improved proton conductivities. Proton conductivity curves parallel to that of Nafion 117 were obtained with proton conductivity of 10−1 S/cm at equivalent ion exchange capacities (IEC) of 1.6 and 1.9, comparable to Nafion®117. The best compromise combining PEM mechanical strength, water swelling and proton conductivity, was achieved at SC of 0.5 and 0.6.  相似文献   

11.
ABSTRACT

Sulfonated poly(ether ketone ether sulfone) (S-PEKES) was successfully prepared to obtain the currently highest degree of sulfonation of 0.744. Sulfonated graphene oxide (S-GO) was incorporated into the S-PEKES matrix to increase sulfonic groups (SO3H) which significantly improved the proton conductivity, methanol blocking, and mechanical stability. The proton conductivity of the S-GO/S-PEKES composite membrane was enhanced up to 5.93 × 10?2 S.cm?1, which was 7 times higher than the commercial Nafion 117. S-GO exhibited additional positive effects namely the blocking of methanol passing through the membrane, leading to lower methanol crossover than Nafion 117 by two orders of magnitude and high mechanical stability.  相似文献   

12.
All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g−1 of PANI. To the best of authors’ knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t0), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.  相似文献   

13.
The incorporation of benzoxazine (Ba) or sulfonic acid containing benzoxazine (SBa) as a crosslinking agent in SPEEK proton exchange membrane (PEM) can substantially improve the SPEEK membrane performance. The SPEEK-SBa membranes give higher effective selectivity than corresponding SPEEK-Ba membranes under close crosslinker loading and thus are more suitable to be used in direct methanol fuel cells. The best achieved SPEEK-SBa composition (SBa40) gives reasonable proton conductivity (0.91 × 10−2 S cm−1) but significantly lower methanol permeability (6.5 × 10−8 S2 cm−1). The achieved effective selectivity (Φ = SPEEK-SBa40: 14.0 × 104 S s cm−3) is substantially higher than the plain SPEEK (Φ = 7.24 × 104 S s cm−3) which has great potential for practical applications in DMFCs.  相似文献   

14.
Dongyang Chen  Min Xiao 《Polymer》2011,52(23):5312-5319
High-molecular-weight bulky-block poly(fluorenyl ether thioether ketone)s were successfully synthesized by a two steps one-pot protocol using N,N′-dimethy-S-carbamate masked dithiols for vanadium redox flow battery (VRB) application. The followed sulfonation procedure gave birth to novel sulfonated block poly(fluorenyl ether thioether ketone)s (SPFETKs) with controlled ionic exchange capacities (IEC). Membranes with proton conductivities higher than (IEC > 1.66 mequiv. g−1) or comparable to (IEC < 1.66 mequiv. g−1) that of Nafion117 membrane were achieved. The VO2+ permeabilities of SPFETKs membranes were much lower than that of Nafion117 membrane. The thermal properties, mechanical properties, oxidative stability, water uptake, proton conductivity, VO2+ permeability and cell performance were investigated in detail.  相似文献   

15.
A series of sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) with different degree of sulfonation (DS) are prepared by the postsulfonation of PESEKK using chlorosulfonic acid as sulfonating agent and concentrated sulfuric acid as solvent. The chemical structures of the polymers are analyzed by the proton nuclear magnetic resonance. The thermal properties of the SPESEKK show that they are greatly influenced by the DS value and sulfonation time. The water uptake, proton conductivity, and Ion exchange capacity values increase as the sulfonation time increasing. The methanol permeability of the SPESEKK in the range of 7.02 × 10?8 to 4.477 × 10?7 cm2 s?1, is one or two orders of magnitude lower than that of Nafion 115. The morphology of the SPESEKK membranes is investigated by scanning electron microscope. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
A series of sulfonated PPESK (SPPESKs) were synthesized through a heterogeneous sulfonation process with fuming sulfuric acid as sulfonating agent in a chloroform solvent. Membranes prepared from SPPESKs were investigated and proved to be candidates of proton exchange membrane in fuel cell operating at high temperature and low humidity. The heterogeneous sulfonation reaction is verified to first occur on the interface of the acid phase and the chloroform phase, then went on in the acid phase. SPPESKs with sulfonation degree (DS) up to 2.0 are obtained through a new reprecipitation method. Effects of reaction temperature, reaction time, acid/polymer ratio, and chloroform/polymer ratio on the sulfonation reaction are reported in details. An increase in sulfonation degree results in the increase of hydrophilicity, bringing about a substantial gain in proton conductivity. SPPESK membranes exhibit high water uptake of about 105.4% with DS of 1.01, almost two times higher than that of Nafion® with similar dimensional variation. Conductivity values at 35°C, 60% R.H. ranging from 10?3 to 10?2 S/cm were measured, which are comparable to or higher than that of Nafion® 112 (1.635 × 10?2 S/cm) under the same test condition. Thermogravimetric analysis shows that SPPESK membranes are stable up to 290°C in N2. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1002–1009, 2007  相似文献   

17.
Commercial polyetheretherketone (Victrex PEEK) was sulfonated up to 90% degree of sulfonation (DS), then reacted with SiCl4 to obtain a hybrid polymer. The product was characterized by 29Si NMR and ATR/FTIR spectroscopies demonstrating the formation of covalent bonds between the organic and inorganic components. No dispersed inorganic silicon was present in the product as evidenced by the lack of any resonance at δ<−100 ppm. Despite the high DS the physicochemical properties of the hybrid were suitable for the preparation of membranes exhibiting high and stable conductivity values (10−2 S/cm), hence suitable for application as ion exchange membrane.  相似文献   

18.
Organic-inorganic hybrid composite membranes have been prepared and evaluated for polymer electrolyte membrane fuel cells (PEMFCs) at 100-140 °C. A series of synthesized poly (fluorinated arylene ether)s was sulfonated by fuming sulfuric acid (20% SO3). The zirconium phosphate composite membrane was prepared by soaking the sulfonated poly (fluorinated arylene ether)s stepwise in 1 M zirconyl chloride solution and 1 M phosphoric acid solution. The chemical, thermal, and electrochemical properties of the composite membrane were investigated by thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and unit cell test. The cell performance of the zirconium phosphate sulfonated poly (fluorinated arylene ether)s composite membrane was superior to that of the starting membrane at intermediate temperature, 100-140 °C. And the cell performance with composite membrane indicated stable behavior during experimentation when operating temperature maintained at 120 °C, whereas sulfonated poly (fluorinated arylene ether)s membrane was irreversible degradation under the same condition.  相似文献   

19.
A novel potentiometric sensor based on a molecularly imprinted polymer (MIP) for determination of promethazine (PMZ) was prepared. Promethazine MIP particles were prepared and dispersed in 2-nitrophenyloctyl ether and then embedded in a polyvinyl chloride matrix. The effect of the monomers type on the sensor performance was investigated, and an important role for this parameter was shown. It was shown that the membrane electrode with a MIP prepared by vinylbenzene and divinylbenzene had a better performance in comparison to membrane electrodes containing MIPs prepared with methacrylic acid-ethylene glycol dimethacrylate or vinylbenzene-ethylene glycol dimethacrylate. After optimization, the membrane electrode constructed with a MIP of vinylbenzene-divinylbenzene exhibited a Nernstian response (31.2 ± 1.0 mV decade−1) over a wide concentration range, from 5.0 × 10−7 to 1.0 × 10−1 M, with a low detection limit of 1.0 × 10−7 M and a response time of ∼50 s. The method has the requisite accuracy, sensitivity and precision to assay PMZ in syrup samples and biological fluids.  相似文献   

20.
Supercapacitors have attracted much interest because of their high power density and long cycling life. However, the porous polypropylene membranes that are widely used as separators in supercapacitors are unfavorable for transporting ions and constructing the interfaces between electrolyte and electrodes due to their hydrophobic property. As a consequence, a crosslinked solid polymer electrolyte membrane and a semi‐interpenetrating polymer network (sIPN) were fabricated from sulfonated poly(ether ether ketone) (SPEEK) and poly(vinyl alcohol) (PVA), which can be used as hydrophilic separators. Their structures were examined using Fourier transform infrared spectroscopy. The electrochemical properties of assembled electrical double‐layer capacitors (EDLCs) were investigated using cyclic voltammetry, galvanostatic charging–discharging and impedance analysis. At a current density of 1 A g?1, a single electrode in the EDLC with the sIPN shows a specific capacitance of 134 F g?1. As a comparison, a single electrode in the EDLC with a SPEEK membrane demonstrates a specific capacitance of only 121 F g?1. After 1000 charge–discharge cycles, the specific capacitance retentions of both EDLCs are nearly 100%. These results suggest that the sIPN based on SPEEK and PVA has great potential to serve as a separator in EDLCs. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号