首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Tomato-based foods rich in Z-lycopene are potentially more bioavailable and have greater bioefficacy compared to natural tomato products which mainly contain all-E-lycopene. To prepare a stable tomato extract with a high level of Z-lycopene, geometrical isomerisation of lycopene was studied in organic solvents either alone or in the presence of a tomato extract. Interconversion between the isomers was observed in all systems with 13Z-lycopene being the least stable. Heating a tomato extract containing mainly the all-E-isomer in ethyl acetate produced successively 13Z-, 9Z- and 5Z-lycopene. An isomerised tomato oleoresin with a minimal content of the most unstable 13Z-lycopene could be obtained by refluxing tomato oleoresin in ethyl acetate for 1 week. In this isomerised tomato oleoresin, total lycopene and lycopene isomer profiles were shown to remain constant for 1 year at room temperature. Accordingly, this product is a valid source of stable and potentially highly bioavailable lycopene.  相似文献   

2.
We evaluated the results of using a proprietary hydrodynamic method, which was introduced with the hope of increasing accessibility of beneficial nutrition-enhancing fruit and vegetable products. Tomato, a major dietary source of carotenoids, notably lycopene, was tested because of its many health benefits to consumers. Samples before and after treatment were compared for lycopene, phytoene, and phytofluene contents. Extractable lycopene and other carotenoids increased significantly. In nature, lycopene exists almost exclusively as the all-trans stereoisomer. Cis-lycopene isomers form during cooking and digestion, resulting in higher percentages in plasma and tissues than ingested. Cis-lycopene isomers are more bioavailable than all-trans lycopene. Extraction using this proprietary method increased extracted cis-lycopene to as high as 43% of the total lycopene, indicating increased isomerisation. This method could therefore contribute significantly to the delivery of health benefits of biologically available lycopene from tomato products for metabolic functions.  相似文献   

3.
This study evaluated the extraction yield of the food grade solvents ethanol and ethyl acetate by extracting lycopene, β-carotene, phytoene and phytofluene from tomato peel powder at varying heating intensities, and the influence of the solvent and heating intensity on carotenoids isomerization and degradation during extraction. The heat treatments assayed were 25, 35, 50 and 60 °C which were applied for periods of 5, 10, 20, 30 or 40 min. The carotenoid yield was higher in the extractions with ethanol than with ethyl acetate. In general, the temperature increase caused an increase in the carotenoid concentrations; however in the extractions performed with ethanol at 60 °C, the yield of (all-E)-lycopene and their (Z)-isomers was lower than at 50 °C. This could indicate that a great isomerization is produced in the high temperature extractions with ethanol but the oxidative degradation is the predominant reaction. On the contrary, the obtained results in the extractions with ethyl acetate indicate that the isomerization is the predominant reaction.  相似文献   

4.
The effect of industrial processing was investigated on the stability of tomato carotenoids, phenolic compounds and ascorbic acid. A deep insight in the processed products allowed the quantification of caffeic acid hexosides, which are far more important contributors than the well-known chlorogenic acid, dicaffeoylquinic acids and quercetin oligosaccharides (new feruloyl, sinapoyl and syringoyl derivatives of quercetin apiosylrhamnosylglucoside). (E)-β-Carotene and (E)-lycopene were also quantified along with different mono- and di-(Z)-isomers of lycopene which were tentatively assigned. Processing of fresh tomato into paste had an overall positive effect on the contents in phenolic compounds, no effect on lycopene and a slight and high detrimental effect on β-carotene and ascorbic acid, respectively. The balance between the increase in tomato matrix extractability and microconstituent catabolism was further observed in two contrasted transformations of paste into sauce. Overall, the nutritional quality of tomato-processed products, except for ascorbic acid, is mainly preserved through manufacture.  相似文献   

5.
The effect of high intensity pulsed electric fields (HIPEF) processing (35 kV/cm for 1500 μs of overall treatment time with bipolar pulses of 4-μs at 100 Hz) and heat pasteurisation (90 °C for 30 s or 60 s) on carotenoids and phenolic compounds as well as on some quality attributes (pH, soluble solids and colour parameters) of tomato juice was evaluated and compared, having the untreated juice as a reference. Processing enhanced some carotenoids (lycopene, β-carotene and phytofluene) and the red colour of juices, whereas no significant changes in phenolic compounds, pH and soluble solids were observed between treated and untreated juices. A slight decrease in overall health-related compounds was observed over time, with the exception of some carotenoids (β-carotene and phytoene) and caffeic acid. However, HIPEF-processed tomato juices maintained higher content of carotenoids (lycopene, neurosporene and γ-carotene) and quercetin through the storage time than thermally and untreated juices. Hence, the application of HIPEF may be appropriate to achieve not only safe but also nutritious and fresh like tomato juice.  相似文献   

6.
7.
Four commercial enzyme preparations with pectinolytic, cellulolytic and hemicellulolytic activities were tested for their ability to enhance lycopene extraction from tomato peels. Screening experiments were performed at 25 °C by subjecting the peels to a 4-h enzyme incubation followed by 1-h hexane extraction. Peclyve EP and LI were the most efficient, with an almost 20-fold increase in extraction yield. Peclyve LI was used to evaluate the influence of solvent type and enzyme incubation time on lycopene recovery. Hexane, ethyl acetate and the mixture hexane/acetone/ethanol 50:25:25 (v/v) were used as solvents. Under the best extraction conditions (1-h enzyme incubation followed by a 3-h solvent extraction at 40 °C) up to 440 mg of lycopene per 100 g of dry tomato peels were obtained. The percentage recoveries were in the range of 3–30%, for the untreated peels, and 77–98% for the enzymatically treated material.  相似文献   

8.
Jianchu Chen  Sophia Jun Xue 《LWT》2009,42(3):740-747
Lycopene can undergo degradation via isomerization and oxidation during processing and storage. These degradative reactions affect its bioactivity and health benefit functionality. Degradation kinetics and isomerization of lycopene in water- and oil-based tomato model systems were investigated as a function of thermal treatments and light irradiation. Results showed that 80 and 100 °C heating favoured the stability of lycopene in oil-based tomato products. The high heating temperatures (120 and 140 °C) increased isomerization of lycopene and resulting in degradation of total lycopene and cis-isomers in both water- and oil-based tomato products. However, the levels of degradation of total lycopene contents and cis-isomers were greater in water-based samples than in oil-based model systems under different treatments. Heat and light both promoted lycopene isomerization of the all-trans form to the cis-isomers and further oxidation of cis-isomers. The major effect of thermal degradation and photosensitized oxidation was a significant decrease in the total lycopene content, especially the content of cis-isomers. These research results could be useful in assisting industry to improve processing technology and to improve the nutritional value and health-benefits of tomato-based foods.  相似文献   

9.
In this study, the effects of electroplasmolysis on β-carotene, chlorophyll-a, chlorophyll-b and total chlorophyll contents of spinach extract and β-carotene and lycopene contents of tomatoes extracts were investigated. Three different voltage gradients (40, 60, 80 V/cm) and three different application periods (4, 8, 12 s) were used. The effects of water bath heating at different temperatures on the extraction yield of colorants were also studied. After pre-treatments, β-carotene, lycopene, chlorophyll-a, and chlorophyll-b extraction was performed. Total solid content, pH and titratable acidity of the spinach and tomato samples were also determined.In spinach, the highest extraction yield efficiency for β-carotene (19.7%) was obtained by water bath heating. The extraction yield efficiencies for chlorophyll-a, chlorophyll-b and total chlorophyll were 14.9%, 12.6% and 13.7% respectively, by the electroplasmolysis treatment at 60 V/cm for 8 s. In tomato, the highest increase in extraction yield efficiencies of β-carotene (139.1%) and lycopene (112.4%) was obtained by electroplasmolysis treatment at 80 V/cm for 4 s.  相似文献   

10.
Cis-isomers of lycopene has been demonstrated to possess higher biological activity than its all-trans form. The objectives of this study were to compare the extraction efficiency and degree of isomerization of lycopene by employing supercritical carbon dioxide (SCD) and solvents, as well as process the lycopene extract into powder containing high proportion of cis-isomers from tomato pulp as source. Results showed that a high yield of lycopene was achieved by SCD at 350 bar and 70 °C, with cis-isomers making up 41.4% of total lycopene. However, with temperature at 80 and 90 °C, the maximum isomerization was accomplished, and cis-lycopene constituted 51.0 and 53.8% of total lycopene, respectively. For solvent extraction, the highest yield of all-trans-lycopene was attained by ethanol–hexane (4/3 v/v) at 25 and 50 °C, whereas the maximum isomerization (47.0% cis-lycopene) occurred at 75 °C. A powder product containing 34.5% cis-isomers of lycopene was obtained by spray-drying, and the total amount of lycopene in spray-dried powder was much greater than that in freeze-dried powder. The maximum yield of lycopene in the powder product could be obtained through processing by adding sodium alginate to the eluate directly after SCD extraction and open-column chromatography with formation of 41.4% cis-lycopene. The method developed in this study may be used for possible commercial production of highly active lycopene powder.  相似文献   

11.
Tomato by-products were produced by puree manufacturing from heat-stabilised fruits and raw fruits to simulate both conventional and innovative processing technologies. By-products were freeze-dried, ground and stored in five relative humidity environments in the range 11–75%, for 4 months at 30 °C. The aims were: (a) to investigate the effect of heating applied during tomato processing on by-product hygroscopicity and stability, (b) to find out the optimal water activity (aw) range for by-product stability. Hygroscopicity was studied by applying the Guggenheim–Anderson–de Boer (GAB) model. By-product stability was studied by evaluating the kinetics of lycopene, β-carotene, rutin and chlorogenic acid degradation and the changes in Hunter’s colourimetric parameters during storage.  相似文献   

12.
A reversed phase HPLC-DAD coupled to APCI-MS method is reported for the determination of the degradation of β-carotene and characterization of the oxidation products in corn oil. Corn oil containing β-carotene was oxidized in the Rancimat at 110 °C from 1 to 14 h. A significant degradation of β-carotene was observed in corn oil during accelerated thermal oxidation. A total of eight different oxidized products of β-carotene were identified, which includes 8′-apo-β-carotenal, 6′-apo-β-carotenal, 5,6-epoxy-8′-apo-β-carotenal, β-carotene-2,2′-dione, 13-Z-5,6,5′,6′-diepoxy-β-carotene, all-E-5,8-epoxy-β-carotene, all-E-5,6-epoxy-β-carotene, and 15-Z-5,6-epoxy-β-carotene. Corn oil triacylglycerols (TAGs) oxidation products were also identified using isocratic HPLC–ESI-MS. It was found that β-carotene promoted oxidation of TAGs especially at longer exposure times. For the first time two new classes of oxidized TAGs have been identified in corn oil, which were epidioxy bis-hydroperoxides and hydroxy bis-hydroperoxides. Other oxidation products of TAGs were mono-epoxides, mono-hydroperoxides, and epoxy hydroperoxides. It was found that complementing the HPLC-DAD method for β-carotene with ESI-MS method for TAGs oxidation provides a comprehensive set of analytical tools to characterize carotenoids and triacylglycerols oxidation and degradation in edible oils.  相似文献   

13.
Tomato peels were firstly dried by different methods (hot air, freeze‐drying, and fluidized bed drying) to evaluate the recovery of lycopene, β‐carotene and DPPH radical scavenging activity. Comparison of the results showed that hot air drying at 50 °C was a suitable method and alternative to freeze‐drying to preserve carotenoids compounds and antioxidant activity in tomato peels. Then, ethanol/ethyl acetate (1:1) extracts from tomato peel, previously dried at 50 °C by hot air, were submitted to heat (100 °C) and light treatment (1000 lumen) to evaluate their stability as natural food dyes. Heating of the extracts caused a progressive reduction of total carotenoids, up to about 30% after 250 min of treatment, whereas the colour at the end of heat treatment showed small changes, with an overall colour difference (?E) equal to 7. Fluorescent lighting treatment showed an almost total degradation of carotenoids in the extracts after 48 h combined with a fading colour.  相似文献   

14.
The stability of carotenoids in tomato juice as affected by various processing treatments was studied. Fresh tomatoes were crushed, hot-broken at 82 °C, screened and the juice was subjected to the following treatments: (1) heated at 90 °C for 5 min prior to canning; (2) heated in water at 100°C for 30 min after canning; (3) heated at 121°C for 40 s before canning (high-temperature-short-time treatment). The results showed that 16 carotenoids, including all-trans plus cis forms of lutein, lycopene and -carotene, were present in tomato juice. Most cis isomers of carotenoids showed inconsistent change during heating. The high-temperature-short-time treatment generated the highest yield of all-trans plus cis forms of lutein and lycopene, followed by heating at 90 °C for 5 min and heating in water at 100 °C for 30 min. Only a minor change in -carotene was observed for these heating treatments.  相似文献   

15.
The aim of this study was to investigate the impact of thermal processing (TP) (90 °C, 90 s), high-pressure processing (HPP) (600 MPa, 46 °C, 5 min), and high-pressure homogenization (HPH) (246 MPa, 99 °C, <1 s) on product quality parameters, specifically carotenoid content, and physicochemical attributes of particle size, color, viscosity, total soluble solids, and pH in tomato juice. Unprocessed tomato juice was used as control. The four major species of carotenoids (lycopene, β-carotene, phytoene, and phytofluene) in tomato juice were analyzed by HPLC. The content of total lycopene, all-trans-lycopene, cis-lycopene isomers,  phytoene, and phytofluene, in TP-, HPP-, and HPH-treated tomato juice did not significantly differ from that in unprocessed (control) juice. Significant reduction in β-carotene content was observed after TP treatment but not after HPP and HPH treatments. HPH significantly reduced tomato juice particle volume mean diameter from ~330 μm in control, HPP-, and TP-treated tomato juices to ~17 μm. A concomitant increase in apparent viscosity was observed in HPH-treated juice versus control. HPH-treated juice had increased redness (a*) and yellowness (b*) than that in control and HPP-treated tomato juices. These results indicate that high-pressure-based technologies (HPP and HPH) can preserve carotenoids as well as improve physicochemical properties.  相似文献   

16.
《Food chemistry》1998,62(4):515-520
Recent epidemiological studies have directed the attention from the synthetic all-trans β-carotene to natural carotenoids predominant in fruits and vegetables as possible active ingredients for prevention of cancer and cardiovascular diseases. Seventeen fruits and 17 vegetables commonly consumed in Israel and the β-car-otene-rich alga, Dunaliella bardawil, were analysed for their content of carotenoids with emphasis on 9-cis β-carotene by reversed-phase, 3D photodiode array HPLC. Fourteen carotenoids were eluted in order of decreasing polarity, from polar oxycarotenoids to lipophilic hydrocarbons, and quantified in μg carotenoid per gram freeze-dried plant sample. The richest sources of total carotenoids (>100μg/g dry weight) in Israeli fruits were pittango, mango and papaya while, in vegetables, the predominant types were carrot, dill, parsley, tomato, lettuce, sweet potato and red pepper. Red fruits and vegetables contained mainly lycopene. Yellow and orange fruits and vegetables had high contents of hydrocarbon carotenes with substantial levels of cryptoxanthins and xanthophylls. The green vegetables had high contents of both xanthophylls and hydrocarbon carotenes. Relatively high ratios (9-cis to all-trans β-carotene) of above 0.2 g/g were noted in sweet potato, papaya, parsley, lettuce, dill, apricot, pepper, prune and pumpkin, compared to the high ratio of 9-cis to all-trans β-carotene in the alga Dunaliella (~ 1.0 g/g). The high content of 9-cis β-carotene in certain fruits and vegetables and the wide variety of carotenoids and stereoisomers of carotenoids in all plants should shift nutritional and medical attention from the synthetic all-trans β-carotene toward natural carotenoids as potential candidates for chemoprevention.  相似文献   

17.
Major antioxidants and antioxidant activity in eight varieties of tomatoes were determined. Hydrophilic and lipophilic antioxidant activity (HAA and LAA) was determined by the ABTS assay and ascorbic acid and carotenoid contents were determined by HPLC-DAD. The HAA has far more significant impact on total antioxidant activity (83%) as compared with LAA. HAA was increasing during all ripening stages and was strongly correlated with ascorbic acid content (r = 0.83). During the ripening the LAA was increasing till the III. stage of maturity and then decreased. The main carotenoids determined in the red-fruit tomatoes were lycopene, β-carotene and lutein. The content of lycopene has been increasing equally during the ripening. β-Carotene and lutein were intensively synthesized between the I. and II. stage of maturity. Among ascorbic acid, α-tocopherol, lycopene, β-carotene and lutein standards ascorbic acid was determined as the most efficient antioxidant followed by α-tocopherol and β-carotene. Antioxidant activity of ascorbic acid, α-tocopherol, β-carotene and lutein grew equally with increasing concentration, however lycopene was the most effective in its lowest concentration. The analysis of two-component mixtures showed significant synergism between lycopene-lutein, lycopene-β-carotene and α-tocopherol-β-carotene.  相似文献   

18.
The stabilization of all-trans-lycopene from tomato by encapsulation using α-, β- and γ-cyclodextrins (CDs) was evaluated. To that end, two different encapsulation methods were comparatively studied: a conventional method and a supercritical fluid extraction (SFE) process. An optimization procedure considering distinct molar ratios of CD/lycopene (1/0.0026, 1/0.005 and 1/0.05) as well as the type of cyclodextrin to be used was accomplished. The encapsulation was determined by using micro-Raman spectroscopy. All-trans-lycopene employed was obtained by SFE with a purity around 90–95%. As a result, a molar ratio CD/lycopene of 1/0.0026 was selected as it provided the best complexation yields (93.8%) whilst β-CD seemed to be the most favorable to be used to stabilize lycopene. A comparison of the two methods studied reflected higher encapsulation yields from the conventional method. However, the supercritical fluid approach offers numerous advantages such as the possibility of performing the extraction, fractionation and encapsulation of lycopene from tomato in one step, shortening notably the overall procedure time and minimizing the sample handling.  相似文献   

19.
The determination of °Brix, pH, titratable acidity and antioxidant composition such as β-carotene, lycopene, and vitamin C was done in greenhouse “Savoura” tomatoes during maturation. The chromatic values L*, a*, b* were determined at the top surface of the tomato, and its strength-deformation curve was tested with a texturometer. Results pointed out that °Brix and titratable acidity did not change during postharvest, while β-carotene, lycopene, and vitamin C contents increased continuously toward the red stage of tomato. The colour values L*, a*, b*, and ratio a*/b* had a good correlation with the maturity stages. Also, a high correlation between lycopene content and (a*/b*) ratio was found, which was well represented with a second order polynomial function (r2 = 0.95). This equation permits to appropriately estimate lycopene content of tomato as a function of its color, without any chemical analysis. During ripening, tomato texture changed from firm turgid to soft and the puncture deformation degree increased. Tomato firmness and chromatic values had a good correlation, and the lycopene content was a logarithm function of firmness (r2 = 0.81). The strength in puncture test increased linearly with deformation until the bioyield point. The measured force was analyzed as the sum of the compression and the shear forces. The two force coefficients can be considered as tomato properties, independent of the puncture probe. These coefficients were found to decrease during tomato maturation.  相似文献   

20.
Lycopene and β-carotene were extracted from freeze-dried tomatoes (skin + pulp) with pure SC CO2 and SC CO2 + 5% w/w co-solvent at 40 °C, 400 bar and flow rates of 0.5 and 1.2 L/min. The apparent solubility of lycopene and β-carotene in the multicomponent complex system was determined from dynamic extraction experiments using a laboratory-scale supercritical extraction system. Solubility of pure lycopene and β-carotene in SC CO2 (binary system) was reported in the literature to be of the order of 10−6 mole fraction. The apparent solubility of lycopene extracted from tomatoes with SC CO2 (multicomponent complex system) under the same conditions was almost one order of magnitude smaller. The apparent solubility obtained using oil as a co-solvent was higher than that obtained with ethanol as a co-solvent or pure SC CO2. The differences in solubility are mainly due to the polarity of the co-solvent and the impact of the tomato matrix in the multicomponent complex system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号