首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 77 毫秒
1.
AZ80镁合金的高温热压缩变形行为   总被引:2,自引:0,他引:2  
在应变速率为0.01-50 s^-1、温度为300-450℃的条件下,在Gleeble-3500热模拟机上对AZ80镁合金的高温热压缩变形特性进行研究。实验得出变形过程中的真应力应变曲线,并利用本构方程对流变应力值进行修正,进而利用修正后的应力值得出本实验本构方程中的系列常量;实验还分析温度、应变速率及应变量对微观组织的影响。结果表明:变形过程中的应力值随温度的升高而降低,随应变速率的升高而升高,且修正后的应力值高于未修正值;变形过程中发生动态再结晶且晶粒平均尺寸随变形参数的不同而改变,其自然对数随Zener-Hollomon(Z)参数的自然对数的升高呈线性降低。  相似文献   

2.
采用实验法研究了AZ80镁合金高温高应变速率压缩时的流变应力.结果表明,镁合金在200~400℃、应变速率为0.001~10s-1进行高温压缩的情况下,流变应力随应变速率的升高和变形温度的降低而升高,其稳态流变应力同Zencr-Hollomon参数的对数之间呈线性关系.引入Zener-Hollomon参数的指数形式来描述AZ80镁合金热压缩变形时流变应力与变形温度和应变速率之间的关系.  相似文献   

3.
在Gleeble-1500热模拟机上对铸态AZ80镁合金在应变速率为0.005s-1~5s-1、变形温度为200℃~400℃条件下的高温热压缩变形行为进行了研究。结果表明,材料真应力-真应变曲线呈现动态再结晶特征。在温度T≥250℃,试样流变应力行为对应变速率敏感;在低温下T=200℃,应变速率对流变应力影响不大。高温下试样流变应力符合幂指数函数关系,应力指数n为6,热变形激活能Q为220kJ/mol。在高应变速率条件下,试样在变形中的温升是应变量的函数。实验中,Zener-Hollomon参数值大的试样温升明显,而Zener-Hollomon值小的试样变形温度基本保持不变。  相似文献   

4.
AZ80镁合金高温热变形流变应力研究   总被引:2,自引:1,他引:1  
在Gleeble2000热模拟机上对铸态AZ80镁合金在应变速率为0.001~1s-1、变形温度为240~440℃条件下的热压缩变形行为进行了研究.结果表明:AZ80镁合金热压缩变形的流变应力受到变形温度和应变速率的显著影响,可以用Zener-Hollomon参数的双曲正弦函数形式进行描述.本实验条件下,AZ80镁合金热压缩变形时的应力指数n为5,其热变形激活能Q为183 kJ·mol-1,建立了流变应力的数学模型,其结果可为变形镁合金的塑性成形工艺的制订提供更为科学的依据.  相似文献   

5.
采用Gleeble-1500D热模拟实验机,对AZ80镁合金在250℃~450℃之间,应变速率为0.001s-1、0.01s-1、0.1s-1、1s-1、5s-1进行热模拟压缩变形,对试样宏观形貌与变形温度和应变速率进行了分析,分析了流变应力与应变速度和温度的关系,结果表明:AZ80镁合金的压缩热变形属于动态再结晶型,镁合金的变形抗力随着变形温度的上升而减小,塑性随着变形温度的增加而有所提高。随变形温度的升高和应变速率的减小,流变应力峰值向应变减小的方向移动,同一变形速率下,变形温度越高所对应的应力值越低。  相似文献   

6.
挤压态AZ81镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
在温度为320~440℃、应变率为0.001~1s-1的变形条件下,采用Gleeble-1500热模拟机对挤压态AZ81镁合金的热压缩变形行为进行研究.结果表明挤压态AZ81镁合金的流变应力随变形温度的升高而降低,随应变率的升高而升高,且随应变的增加,流动应力很快达到峰值,然后逐渐降低并趋于稳定.为评价挤压态AZ81镁合金在热模压成形过程中流动应力,结合Arrhenius方程并引入Zener-Hollomon参数,对流动应力做出相应的修正,根据修正后的流动应力构建挤压态AZ81镁合金流变应力高温变形本构模型.模拟结果表明该模型的应力预测值与试验值吻合较好,计算精度较高,为后续的模压近/净终成形工艺参数的制定提供一定的理论参考.  相似文献   

7.
ZM61镁合金的热变形行为   总被引:4,自引:3,他引:1  
采用圆柱试样在Gleeble-1500材料热模拟试验机上对ZM61镁合金进行等温压缩变形试验,研究了该合金在变形温度为300~390℃、应变速率为0.001~0.1 s<'-1>条件下的流变行为.结果表明:ZM61镁合金热压缩时流变应力随流变速率的降低和变形温度的升高而减小,其热压缩变形过程分为加工硬化、过渡、软化和稳态流变四个阶段;ZM61镁合金的热流变行为可用包含Arrhenius项的Zener-Hollomon参数来描述.其热变形本构方程为:ε=1.1915×10<'15>[sinh(0.020756σ)]<'4.3159>exp(-201.86×10<'3>/RT),该本构关系的计算结果与实验结果之间的相对误差小于12.9%,可为制定ZM61镁合金的热加工工艺提供理论依据.  相似文献   

8.
AZ61镁合金高温变形应力修正及本构方程的建立   总被引:2,自引:1,他引:2  
有限元模拟日益成为金属成形工艺优化的有力工具,而工程材料变形行为本构方程的精确描述是保证模拟精度的关键之一。通过热模拟实验对AZ61镁合金的高温压缩变形行为进行研究,实验设备为Gleeble3500热模拟实验机,实验采用的温度为250、300、350、400和450℃,应变速率为0,01、0,1、1、10和50s^-1。研究发现,AZ61镁合金流变应力随变形温度的升高而降低,随应变速率的升高而升高。在高应变速率下,变形热引起的试样温升非常显著。为了真实地反应AT61镁合金高温压缩变形时的力学行为,对流变应力作出相应修正,并根据修正后的流变应力建立高温变形本构方程。  相似文献   

9.
在变形温度为623-773 K、应变速率为0.01~1.0 s-1、最大变形量为60%条件下,采用Gleeble-1500D热/力模拟机对Mg-6.5Y-2.5Nd-0.6Zr合金热压缩变形流变应力行为进行实验研究.结果表明:在应变速率为1.0 s-1等温压缩时,由变形热引起的温升最大达到25 K,修正后流变应力最大比测量值增加31.2 MPa;而应变速率为0.1 s-1压缩时,流变应力的修正值较测量值先减小后增大,其差值在7.8 MPa以内.根据修正的真应力-真应变曲线,结合包含双曲正弦形式的Arrhenius方程并引入Zener-Hollomon参数建立了流变应力本构方程,运用该方程计算的峰值应力与修正的实验数据吻合很好,其相对误差不超过5%.  相似文献   

10.
半连续铸造AZ31B镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
针对半连续铸造的AZ31B镁合金,采用Gleeble-1500热/力模拟机在变形温度为473~723 K、应变速率为0.01~10 s-1、最大变形量为80%条件下进行热/力模拟研究;结合热变形后的显微组织,分析合金力学性能与显微组织之间的关系。结果表明:当变形温度一定时,流变应力和应变速率之间存在对数关系,并可用包含Arrheniues项的Z参数描述半连续铸造的AZ31B镁合金热压缩变形的流变应力行为;实验合金在523 K时开始发生动态回复;随着变形温度的升高和应变速率的降低,动态再结晶开始对AZ31B合金的变形行为产生明显影响,在变形温度623 K以上的各种应变速率下,AZ31B镁合金易变形。  相似文献   

11.
AZ80镁合金热变形流变应力研究   总被引:1,自引:1,他引:0  
在应变速率为0.001s-1~10s-1,变形温度为200℃~400℃条件下,在Gleeble-3800热模拟机上对AZ80合金的流变应力进行了研究。结果表明,AZ80合金的流变应力强烈地受变形温度的影响,当变形温度低于300℃时,其峰值流变应力呈现幂指数关系;当变形温度高于300℃时,其峰值流变应力呈现指数关系。在该文实验条件下,AZ80合金热变形应力指数n=8.43,热变形激活能Q=165.83kJ/mol。  相似文献   

12.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

13.
5083铝合金热压缩变形流变应力行为   总被引:4,自引:2,他引:4  
在Gleeble-1500热模拟机上,当变形温度为300-500℃、应变速率为0.01-10 s^-1、真应变为0-0.8时,采用圆柱体等温热压缩实验研究5083铝合金变形流变应力行为。通过分析流变应力指数函数中系数A、β与应变的关系,建立Zener-Hollomon参数的指数关系本构方程。运用该本构方程对5083铝合金不同应变速率、变形温度及应变条件下的流变应力进行预测,发现流变应力预测值与温升修正值吻合得相当好。  相似文献   

14.
The flow stress features of MB26 magnesium alloy were studied by isothermal compression at 300-450 ℃ and strain rate of 0.001^-1 s J with Gleeble 1500 thermal simulator. In addition, the deformation activation energy Q was calculated. The results show that the strain rate and deformation temperature have obvious effect on the true stress. The peak value of flow stress becomes larger with increasing strain rate at the same temperature, and gets smaller with the increasing deformation temperature at the same strain rate. The alloy shows partial dynamic recrystallization. The flow stress of MB26 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter including the Arrhemius term. The temperatt, re range of 350-400℃ is suggested for hot-forming of this alloy.  相似文献   

15.
AZ31镁合金高温热压缩变形特性   总被引:34,自引:5,他引:34  
在应变速率为0.005~5 s-1、变形温度为250~450℃条件下,在Gleeble-1500热模拟机上对AZ31镁合金的高温热压缩变形特性进行了研究.结果表明:材料流变应力行为和显微组织强烈受到变形温度的影响;变形温度低于350℃时,流变应力呈现幂指数关系;变形温度高于350℃时,流变应力呈现指数关系;变形过程中发生了动态再结晶且晶粒平均尺寸随变形参数的不同而改变,其自然对数与Zener-Hollomon(Z)参数的自然对数成线性关系;材料动态再结晶机制受变形机制的影响,随温度的不同而改变;低温下基面滑移和机械孪晶协调变形导致动态再结晶晶粒的产生;中温时Friedel-Escaig机理下位错的交滑移控制动态再结晶形核;高温时位错攀移控制整个动态再结晶过程.在本实验下,材料的最佳工艺条件是:变形温度350~400℃,应变速率为0.5~5 s-1.  相似文献   

16.
Al-Mn-Mg-Cu-Ni合金热压缩变形的流变行为和组织   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Al-Mn-Mg-Cu-Ni合金进行热压缩试验,分析合金的流变应力与应变速率和变形温度之间的关系,计算高温变形时的变形激活能,并研究合金在变形过程中的显微组织。结果表明:Al-Mn-Mg-Cu-Ni合金在本实验条件下具有正的应变速率敏感性;流变应力随应变速率的增大而增大,随变形温度的升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为209.84kJ/mol。随着热变形温度的升高和应变速率的减小,合金中的主要软化机制逐步由动态回复转变为动态再结晶。  相似文献   

17.
采用Gleeble-1500D热模拟试验机,对Cu-Ni-Si-Cr合金在变形温度为600~800℃、应变速率为0.01~5 s-1条件下的动态再结晶行为以及组织转变进行了研究,分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化.结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大,材料显微组织强烈受到变形温度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号