首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
氢能因来源广、无污染、热值高等特点成为解决能源问题的重要方案。随着燃料电池技术的发展,氢能在车载方面的应用得到进一步拓宽,但氢气的加注、存储问题成为限制氢能汽车发展的瓶颈之一。实现氢气安全高效的存储是氢能规模化应用的关键。目前主要的储氢方式有高压气态、低温液态、固态。通过增加氢气压力和提高容器材料的比强度,可有效提高气态储氢系统的质量储氢密度,但由于气体分子间作用力的影响,高压气态储氢的体积储氢密度较低。同时过高的氢压对安全储氢罐的设计和成本也是一大挑战。通过加压、降温液化氢气实现的液态储氢拥有理想的质量储氢密度和体积储氢密度,但保存液态氢对设备要求十分苛刻,且液化氢气所需能耗为氢燃烧热值的40%,得不偿失。固态储氢方式将氢以原子、离子的形式存储于氢化物中,因此固态储氢材料的体积储氢密度可观,且材料吸/放氢条件温和,安全性高,但固态储氢材料的质量储氢密度不占优势。高压复合储氢罐将高压储氢技术与固态储氢材料相结合,同时拥有气态储氢与固态储氢的优势,是实现安全高密度储氢的有效途径。通过气-固复合的储氢方式,可有效提升高压储氢罐的体积储氢密度,减小储氢罐体积,降低充氢压力,提高安全性。而发展在高压条件下具有良好充/放氢特性的储氢材料是提升高压复合储氢罐性能的关键。TiCr2基、ZrFe2基AB2型合金是主要的高压储氢合金,对它们的研究集中在通过利用不同原子半径、电子结构的合金元素进行A侧和/或B侧元素替代,实现对合金平台压、容量、吸放氢动力学性能的有效调控。但TiCr2基、ZrFe2基储氢合金的质量储氢密度仍然偏低,相比之下,NaAlH4与AlH3具有高的储氢密度,是潜在的高压储氢材料。通过纳米化、掺杂催化剂等手段能够有效降低NaAlH4的脱氢温度,提高其循环稳定性;通过球磨、改善溶剂等方法可提升AlH3的合成产率、改善其结晶性。本文简要介绍了高压复合储氢罐的原理及对高压储氢材料的主要性能要求,着重评述了间隙型储氢合金(TiCr2、ZrFe2)、铝基金属氢化物(NaAlH4、AlH3)两类高压储氢材料的结构、性能特点及研究进展。  相似文献   

2.
纳米碳管储氢实验和机理研究   总被引:2,自引:0,他引:2  
本文简要回顾了储氢材料研究的发展情况,主要介绍了纳米碳管储氢的实验进展。作者对纳米碳管储氢的机理方面进行了初步探讨,针对单壁纳米碳管,提出了一种解离凝聚机制。  相似文献   

3.
储氢材料研究进展   总被引:2,自引:0,他引:2  
氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属(合金)储氢、碳基储氢、有机液体储氢、络合物储氢、硼烷氨储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。  相似文献   

4.
纳米碳纤维的储氢性能初探   总被引:15,自引:0,他引:15  
主要阐述了流动催化剂法制备的纳米炭纤维的储氢特性,发现在室温下纳米炭纤维可以快速大量吸氢。纳米炭纤维的储氢量远远高于目前各种储氢材料的储氢容量。  相似文献   

5.
纳米炭纤维的储氢性能初探   总被引:6,自引:0,他引:6  
主要阐述了用流动催化剂法制备的纳米炭纤维的储氢特性,发现在室温下纳米炭纤维可以快速大量吸氢纳米炭纤维的储氢量远远高于目前各种储氢材料的储氢容量100nm左右的炭纤维的储氢容量高达10%以上(质量分数),如此高的储氢容量使其在燃料电池等方面具有厂阔的应用前景.  相似文献   

6.
碳基材料吸附储氢原理及规模化应用前景   总被引:12,自引:0,他引:12  
周理 《材料导报》2000,14(3):3-5
评价了各种可行的规模化储氢方法,指出碳基材料低温吸附储氢是最有工业化前景的储氢技术,分析了活性炭和碳纳米及纳米碳纤维吸附储氢机理,指出在将其作为具有实用性的储氢材料之前,必须解决的两个关键问题,即如休提高其体积储氢密度,以及如何改善其吸放氢的动力学行为。  相似文献   

7.
多孔材料已经被广泛地应用于储氢研究。本文研究了Pd负载的高度交联聚苯乙烯(Pd—HCLPS)储氢材料的制备及储氢性能。在超声的辅助下,通过简便的置换反应成功制备了Pd—HCLPS。Pd颗粒以纳米尺度均匀分散在聚合物中。通过调节超声时间,制备了一系列不同Pd含量的Pd—HCLPS样品。发现Pd含量是影响氢溢流的一个重要因素。相比于HCLPS,Pd的负载使Pd—HCLPS样品的储氢量增强了1.1~1.7倍。在173K,3.1MPa下,最大储氢量为1.46wt9/6。  相似文献   

8.
近年来,三氢化铝作为一种新型的固态储氢材料,因其较高的储氢容量和较低的放氢温度,其在可移动氢源系统,特别是车载储氢燃料电池方面的应用研究愈加广泛。阐述了三氢化铝的晶体结构,对国内外在其储氢特性(分解脱氢热力学和动力学特性、可逆循环)和储氢改性方面(稳定化、去稳定化)的研究进展进行了综述,并展望了其未来发展趋势。  相似文献   

9.
论述了目前几种主要固体储氢材料的研究进展,包括金属基合金材料(镁系合金、稀土系合金、钛系合金和锆系合金)、碳基材料(活性炭、石墨纳米纤维、碳纳米纤维和碳纳米管)、玻璃微球、配合物以及金属有机框架物。通过比较各种材料储氢的机理与方式、吸放氢的温度与压力、循环寿命,分析了其优缺点,并展望了固体储氢材料未来的发展趋势,认为开发安全稳定高效的复合储氢材料、实现固体储氢材料的工业化制备是未来储氢材料研究的新方向。  相似文献   

10.
冯晶  陈敬超  肖冰 《材料导报》2005,19(Z1):239-241,244
介绍了金属基合金储氢的基本原理及反应机理,对其发展现状进行了较全面的总结.包括稀土系、锆系、钛系、镁系金属以及一些新型的储氢材料,标志着研究的最新动向.简单介绍了对材料性能的改进,提出了进一步研究储氢合金的方向.  相似文献   

11.
小功率质子交换膜燃料电池是目前质子交换膜燃料电池的研究热点之一,通过三维实体造型设计,使箱体结构设计达到灵活、实用、可靠和便捷等目的,以小功率自行车用燃料电池为主要应用目标,对采用高压氢气瓶、小型金属氢化物储气罐等不同氢气供气方式下的小功率质子交换膜燃料电池进行箱体结构和造型设计,使其既能在通用供气方式下作为一个独立的部件进行供电,也能快速安装金属氢化物储气罐箱体进行移动电源和便携式装置的供电,实现了使用的可靠性、灵活性和便捷性。  相似文献   

12.
在介绍目前国内外各种成熟的工业储氢方法,并指出储氢技术研究热点和发展方向的基础上,针对人防工程备用氢能发电站的技术要求,对各种适用的储氢方式进行了比较,探讨了人防工程备用氢能发电站的氢气储存方法,以及氢气安全储存、运输与监控、反应热处理等问题。  相似文献   

13.
高容量储氢材料的研究进展   总被引:6,自引:0,他引:6  
氢能是一种理想的二次能源.氢能开发和利用需要解决氢的制取、储存和利用3个问题,而氢的规模储运是现阶段氢能应用的瓶颈.氢的储存方法有高压气态储存、低温液态储存和固态储存等3种.固态储氢材料储氢是通过化学反应或物理吸附将氢气储存于固态材料中,其能量密度高且安全性好,被认为是最有发展前景的一种氖气储存方式.由轻元素构成的轻质高容量储氢材料,如硼氢化物、铝氢化物、氨摹氢化物等,理论储氢容量均达到5%(质量分数)以上,这为固态储氢材料与技术的突破带来了希望.新型储氢材料未来研究的重点将集中于高储氢容量、近室温操作、可控吸/放氢、长寿命的轻金属基氢化物材料与体系.  相似文献   

14.
昌锟  李青  李强 《低温工程》2007,(5):36-41
氢能规模应用需要储运数以亿立方米计的氢源,液氢储存在各种储氢方式中规模实用化的优势明显.提出采用新的低温分离法将焦炉气中的氢分离并同时液化,及分区液化和分段加压模型.通过分离模型的能耗计算,表明分段加压能大大减少流程能耗,计算结果对新流程的组织有指导作用.  相似文献   

15.
一种新型储氢材料─纳米炭纤维的制备及其储氢特性   总被引:1,自引:0,他引:1  
利用气相流动催化法和高压容积法对纳米炭纤维的大量制备及其储氢特性进行了研究 结果表明,利用在小型装置上优化的制备工艺参数,在反应空间扩大7倍的中型装置中可以实现纳米炭纤维的大量制备 在制备过程中加入扰流管能够改变炉管中的气流状态,从而影响纳米炭纤维的直径和产率 扰流管放置在适宜的区域,能够得到直径较细、纯净、碳源转化率达30%的纳米炭纤维 实验发现纳米炭纤维的表面处理是影响其储氢性能的主要因素,经过适当表面处理的纳米炭纤维,其储氢容量达到 10%  相似文献   

16.
多孔材料的储氢性能研究是氢能经济发展的重要课题之一,然而其室温下的储氢性能还不能满足氢存储系统的所有要求。氢溢流被证明是提高多孔材料在室温下储氢性能的有效方法。主要从氢溢流产生的方法及其优缺点,氢溢流在碳基纳米材料、沸石、金属有机骨架和共价有机骨架等多孔材料储氢性能研究中的最新动态进行了详细综述,并指出了当前存在的问题和今后的发展方向。  相似文献   

17.
机械合金化制备镁系储氢材料的研究进展   总被引:4,自引:2,他引:2  
机械合金化法是新近发展起来的制备镁系储氢材料的较佳工艺.综述了国内外采用该法制备镁系储氢材料的研究进展情况,报道了机械合金化法制备MgH4、Mg2Ni、多元镁基储氢合金、非晶态镁系储氢合金及纳米复合镁系储氢材料的最新研究成果,总结认为,机械合金化可以显著改善镁系储氢材料的动力学性能和电化学性能,提高储氢量.  相似文献   

18.
机械合金化法是制备镁基储氢合金的较佳工艺。对近年来机械合金化法制备镁基储氢合金的研究开发,特别是在多元合金化、复合储氢合金等方面的发展进行了系统阐述。总结认为,机械合金化法可以显著改善镁基储氢合金的动力学性能和电化学性能,提高储氢量。未来镁基储氢合金应向复合材料、新方法与机械合金化法相结合、材料的计算机设计等方面发展。  相似文献   

19.
ZrCo合金由于优异的储氢性能以及安全特性,已被国际热核实验堆(ITER)研发团队选取为用于氢同位素快速储存与供给的重点备选材料。然而,由吸/放氢循环过程中发生的氢致歧化效应导致的储氢性能严重衰减,成为了ZrCo合金推广应用于氢同位素快速储存与供给的最大障碍。因此,改善ZrCo合金的抗氢致歧化性能对其广泛应用于氢同位素快速储存与供给领域具有重要意义。本文介绍了ZrCo合金的储氢性能和氢致歧化特性,综述了元素替代(掺杂元素部分替代Zr或Co)改善ZrCo合金抗歧化性能的研究进展,并指出进一步改善ZrCo合金抗歧化性能的必要性及可能的发展方向。  相似文献   

20.
镁基储氢材料研究现状   总被引:5,自引:0,他引:5  
从镁基储氢材料体系、制备方法及其应用研究等方面对该类材料进行了综述,归纳分析了影响镁基储氢材料吸放氢性能的因素,明确了镁基储氢材料未来的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号