共查询到4条相似文献,搜索用时 0 毫秒
1.
Diamond turning technology has gained great importance in high-precision optical component fabrication. The quality of machined optical surfaces is mainly affected by the machine tool's accuracy, cutting tool's quality, and dynamic machining effects. This study investigated the effects of cutting tool conditions and tool set-up error on the surface distortion. Controlled cutting tests were performed on a two-axis diamond turning machine. Spherical mirrors with preset tool offset values and tool height values were turned. The relationship among machined form accuracy, tool offset, and tool height was investigated based on experimental and analytical results. The influence of tool wear on machined surface quality was studied. Factors governing uneven wear along the cutting edge in contour machining were analyzed. A spherical surface with a form accuracy better than λ/10 was produced. Methods for minimizing the effect of tool wear are also discussed. 相似文献
2.
An investigation of the characteristics of microcutting forces in diamond turning of crystalline materials is presented. The characteristics of the cutting forces were extracted and analyzed using statistical and spectrum analysis methods. A series of cutting experiments were done on a copper alloy and copper single crystals with different crystallographic orientations. Experimental results indicate that there exists a dominant frequency component and a periodicity of fluctuation of the cutting forces per workpiece revolution in the diamond turning of a single crystal material. The periodicity is closely related to the crystallographic orientation of the material being cut. As the depth of cut increases, the influence of crystallographic orientation of the single-crystal materials on microcutting forces is found to be more pronounced. Moreover, the cutting force ratio between the mean thrust force and the mean cutting force is found to vary with the depth of cut, and a large ratio was observed at a small depth of cut. These findings help to explain quantitatively the periodic fluctuations of microcutting forces (and hence the materials-induced vibration) in ultraprecision diamond turning, which are not encountered in conventional machining. 相似文献
3.
Ming Zhou B. K. A. Ngoi Z. W. Zhong C. S. Chin 《Materials and Manufacturing Processes》2001,16(4):447-460
Silicon single crystals are not amenable to conventional machining operations because of their inherent low fracture toughness. This paper deals with an investigation of brittle-ductile transition in diamond cutting of silicon from the viewpoint of material response and tool geometry. Micro indentation and scribing tests were conducted in order to investigate the influence of applied loads on the deformation characteristics. The transition of material removal from brittle to ductile was observed by continuously changing the cutting depth. The effect of tool rake angle on the machined surface quality was studied by actual diamond turning. A mirror surface, with a roughness of 5 nm Ra, was produced using a tool with a -25° rake angle. The reason for the difference in the machined surface quality is discussed based on the analysis of stress distribution in the microcutting process. 相似文献
4.
This paper deals with an investigation of the effect of crystallographic orientation and process parameters on the surface roughness of brittle silicon single crystals in ultraprecision diamond turning. The process parameters involve the depth of cut, feed rate, and spindle speed. Experimental results indicate that anisotropy in surface finish occurs when the cutting direction relative to the crystal orientation varies. There exists a periodic variation of surface roughness per workpiece revolution, which is closely related to the crystallographic orientation of the crystals being cut. Such an anisotropy of surface roughness can be minimized with an appropriate selection of the feed rate, spindle speed, and depth of cut. The findings provide a means for the optimization of the surface quality in diamond turning of brittle silicon single crystals. 相似文献