首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
基于可见/近红外光谱技术的茄子叶片灰霉病早期检测研究   总被引:15,自引:3,他引:15  
应用可见/近红外光谱技术对茄子叶片进行灰霉病害还未在叶片表面出现病症时的早期检测.采用化学计量学方法建立早期检测模型.主成分分析用于对光谱数据进行降维,得到若干个最重要的主成分.但直接从聚类图中无法进行是否染病的鉴别.因而将其作为变量输入BP神经网络,从而减少了计算量,提高了建模精度.检测结果显示,模型具有良好的检测效果,能够达到100%的识别率,正确率也能达到88%.说明运用可见/近红外光谱技术能够实现当病症还未在叶片表面出现时的快速准确的早期检测,为灰霉病早期检测提供了新的途径.  相似文献   

2.
基于近红外光谱的舌诊疾病识别的研究   总被引:1,自引:0,他引:1  
严文娟  李刚  林凌 《红外技术》2010,32(8):487-490,494
为了对中医舌诊的客观化研究,提出了应用近红外光谱分析技术快速无创的对健康人、冠心病、糖尿病和肝炎患者的不同人群的舌诊近红外光谱进行识别的新方法.首先对98个样本光谱数据进行归一化处理,用主成分分析(PCA)方法得出的累计贡献率达99.88%的前8个主成分作为广义回归神经网络(GRNN)的输入变量,建立了舌诊近红外光谱的识别模型.利用该模型分别选取了18个不同人群的近红外光谱数据共72个样本用于神经网络的训练,余下的26个用于预测,当光滑因子为5/8时预测的最大误差为0.17342,最小误差为0,获得了较理想的预测精度.实验结果表明用PCA和GRNN相结合的方法对舌诊近红外光谱与疾病之间建立了较好的关联,对加强中医舌诊的客观化起到了很好的促进作用,为疾病的诊断提供了一种新的方法.  相似文献   

3.
利用地物光谱仪采集了晴天条件下典型地物在380~1100nm的光谱反射率,并利用经过定标后的CMOS相机采集典型地物不同时段的可见光、近红外图像,结合相机辐射定标结果和地物目标的反射率建立了可见光、近红外图像灰度值的映射关系,且对简单场景进行图像分割,并通过查找表快速将可见光图像转化为近红外图像.建立了太阳辐射模型,在反演精度要求不是很高的条件下,可以反演一天内任意时刻的近红外图像.仿真结果表明,本文方法可生成真实感较好的近红外图像,为后续的各时段、各种天气条件及多种地物的近红外场景仿真奠定基础.  相似文献   

4.
提出了一种结合主成分分析和人工神经网络技术的可见~红外光谱家蚕蚕种快速鉴别新方法.主成分分析法用于家蚕蚕种品种的聚类分析及主成分的提取.从主成分1和2对所有建模样本的得分图可以看出,主成分分析法对不同种类家蚕蚕种具有较好的聚类作用,可以定性分析家蚕蚕种品种.提取了6个能解释原始光谱的大部分信息的主成分,作为BP神经网络的输入,建立了三层BP人工神经网络模型.选取了4个典型的家蚕蚕种品种,共120个样本,其中随机选取了100样本用来建立神经网络品种鉴别模型,对未知的20个样本进行预测,结果表明,品种识别准确率达到100%.说明该方法具有很好的分类和鉴别作用,为家蚕蚕种的品种鉴别提供了一种新的途径.  相似文献   

5.
基于可见/近红外反射光谱的稻米品种与真伪鉴别   总被引:8,自引:0,他引:8  
利用可见/近红外光谱技术对市场上5种稻米进行了鉴别.以ASD FieldSpec3地物光谱仪采集了5种稻米的光谱数据,各获取35个样本,随机分成训练集(150份)和检验集(25份),并分别采取全波段与特征波段(400~500nm、910~1400nm与1940~2300nm)两种方法建立模型进行分析.光谱经S.Golay平滑和标准归一化(SNV)处理后,以主成分分析法(PCA)降维.将降维所得的前9个主成分数据作为BP人工神经网络(BP-ANN)的输入变量,稻米品种作为输出变量,建立3层BP-ANN鉴别模型.利用25个未知样对模型进行检验,结果表明两类模型预测准确率均高达100%,其中特征波段模型比全波段模型具有更高的预测精度,说明利用可见/近红外技术结合PCA-BP神经网络分析法进行稻米品种与真伪的快速、无损鉴别是可行的,且提取特征波段是优化模型的有效方法之一.  相似文献   

6.
罗威强  杨海清  李云 《红外》2013,34(1):15-19
提出了一种利用近红外光谱技术对南蛇藤品种进行快速无损鉴别的方法。收集了6种南蛇藤样本,并用光谱仪获得了它们在12493~4000 cm-1范围的光谱曲线。通过用主成分分析法对预处理后的光谱数据进行聚类分析,获得了10个主成分。再结合不同的化学计量分析方法建立了品种鉴别模型。由于主成分1和2上的得分分布对不同样本的聚类效果明显,可根据得分分布定性地区分南蛇藤品种。从220个样本中随机抽取165个样本作为建模集,并将其分别用于建立线性鉴别分析、人工神经网络和支持向量机模型。剩下的55个样本用于预测验证。经过主成分数的优化,鉴别精度均达到了100%。结果表明,本文提出的方法对南蛇藤的品种具有很好的分类和鉴别作用。  相似文献   

7.
基于KPCA和LSSVM的蜂蜜近红外光谱鉴别分析   总被引:1,自引:0,他引:1  
谈爱玲  毕卫红 《激光与红外》2011,41(12):1331-1336
为快速鉴别普通植物源与中草药植物源蜂蜜,提出一种核主成分析和最小二乘支持向量机相结合的蜂蜜近红外光谱定性分析新方法。利用傅里叶变换近红外光谱仪测定普通洋槐蜂蜜和益母草、黄连两种中药植物源蜂蜜样本的近红外光谱并预处理,然后对光谱进行核主成分分析,提取非线性特征,最后设计基于纠错编码最小二乘支持向量机的多类分类器模型。采用网格搜索法确定模型最优参数,利用最优分类模型对未知类别蜂蜜样本进行识别,正确率可达96.67%。结果表明,基于KPCA和LSSVM的近红外光谱定性分析算法鉴别普通植物源与中草药植物源蜂蜜是可行的。  相似文献   

8.
李敏 《红外》2015,36(5):43-46
以乐山产正品竹叶青、劣质竹叶青和峨眉山毛峰为研究对象,提出了一种基于近红外光谱的不同茶叶品种分类识别算法.该算法采用多元散射校正(Multiplicative Scatter Correction,MSC)对3种茶叶的近红外光谱数据进行预处理,最大限度地扣除光谱数据中的随机变异;再采用主成分分析算法(Principal Component Analysis,PCA)对预处理后的光谱数据进行降维,去除冗余;接下来进行线性判别分析(Linear Discriminant Analysis,LDA),进一步提取特征;最后采用K_近邻算法(K_Nearest Neighbor,KNN)对LDA结果的前两个特征进行分类,从而达到对茶叶进行定性分类的目的.实验结果表明,该算法能有效地对3种茶叶进行分类,正确识别率达到100%.本研究为不同品种茶叶的分类识别提供了一种新思路.  相似文献   

9.
基于可见/近红外光谱技术的黄瓜叶片SPAD值检测   总被引:3,自引:0,他引:3  
为了快速准确检测黄瓜叶片的SPAD值,采用可见/近红外光谱技术并结合化学计量学方法建立了黄瓜叶片SPAD值校正模型.并用不同建模方法对全波段光谱进行建模,结果表明用最小二乘支持向量机(LSSVM)建模得到的预测效果最好,其相关系数r和预测均方根误差RMSEP分别为0.9583和0.9732.通过分析黄瓜叶片的光谱反射率与SPAD值的相关系数和PLS建模回归系数,得到了531~581nm和696~716nm 2个特征波段以及556nm、581nm、698nm和715nm 4个特征波长,应用LSSVM分别对特征波段和特征波长建模.分析表明,采用特征波段建模,其预测相关系数r和预测均方根误差分别为0.9338和1.1370,与全波段建模结果相近,而采用特征波长建模效果稍差.特征波段建模大大减少了建模中的运算量,提高了建模速度,便于相应检测仪器的开发,所以,采用光谱特征波段建模对黄瓜叶片SPAD值的检测更为有效.  相似文献   

10.
基于可见-近红外光谱技术的家蚕蚕种鉴别方法的研究   总被引:7,自引:4,他引:7  
提出了一种结合主成分分析和人工神经网络技术的可见-红外光谱家蚕蚕种快速鉴别新方法.主成分分析法用于家蚕蚕种品种的聚类分析及主成分的提取.从主成分1和2对所有建模样本的得分图可以看出,主成分分析法对不同种类家蚕蚕种具有较好的聚类作用,可以定性分析家蚕蚕种品种.提取了6个能解释原始光谱的大部分信息的主成分,作为BP神经网络的输入,建立了三层BP人工神经网络模型.选取了4个典型的家蚕蚕种品种,共120个样本,其中随机选取了100样本用来建立神经网络品种鉴别模型,对未知的20个样本进行预测,结果表明,品种识别准确率达到100%.说明该方法具有很好的分类和鉴别作用,为家蚕蚕种的品种鉴别提供了一种新的途径.  相似文献   

11.
建立了一种基于独立组分分析的可见/近红外光谱反射技术快速鉴别稻谷年份的新方法.首先用独立组分分析方法获取不同年份稻谷的可见/近红外光谱载荷图,将载荷图中相关性最大的波段(特征波段)作为人工神经网络的输入建立稻谷年份的鉴别模型.每个年份40个样本,3个年份共120个样本用来建立BP神经网络模型,剩余的3个年份各20个样本用于预测.预测的结果表明,准确率达到100%.同时通过独立组分分析,得到了稻谷主要成分对应的敏感波段.说明本文提出的基于独立组分分析的方法具有很好的鉴别效果,为稻谷的年份鉴别提供了一种新方法.  相似文献   

12.
为了探索一种快速有效的蜂花粉新鲜程度检测方法,利用可见近红外光谱技术结合最小二乘支持向量机(LSSVM)对蜂花粉的贮存时间进行了检测.选择常温环境中贮存时间为4~50天(共计47天)的茶花蜂花粉作为研究对象,将全光谱数据作为输入变量建立了LSSVM模型.结果显示,该LSSVM模型预测效果较好,预测相关系数rp达到了0.996,预测标准误差(SEP)和预测均方根误差(RMSEP)的值分别为1.310和1.308,优于偏最小二乘法(PLS)和主成分回归(PCR)的预测结果,说明基于LSSVM的可见近红外光谱技术能够很好地对花粉贮存时间进行检测.同时对不同贮存时间段花粉的预测效果进行了比较,发现该LSSVM模型适用于对第11~50天范围的贮存时间进行检测.  相似文献   

13.
提出了一种用可见-近红外漫反射光谱技术快速鉴别水蜜桃品种的新方法.应用可见-近红外光谱仪测定三个品种水蜜桃的光谱曲线,再用主成分分析法对不同品种样本进行聚类分析,获取了水蜜桃可见-近红外光谱的特征信息,同时结合多类判别分析技术建立水蜜桃品种鉴别的模型.对经过预处理的光谱数据进行主成分分析,分析表明,以样本在第一主成分和第二主成分上的得分做出的二维散点图,对不同种类水蜜桃具有很好的聚类,能定性区分不同种类水蜜桃;经过主成分分析得到的前8个主成分的累积可信度已达94.38%,说明这8个变量能够代表绝大部分原始光谱的信息.从75个样本中随机抽取60个样本用于建立8个主成分变量的多类判别分析品种鉴别模型,余下的15个样本用于验证,准确率为100%.说明本文提出的方法具有明显的分类和鉴别作用.  相似文献   

14.
可见/近红外光谱预测杨梅汁酸度的方法研究   总被引:10,自引:7,他引:10  
针对可见/近红外光与杨梅汁酸度存在非线性相关的特点,提出了应用偏最小二乘(PLS)法预测线性部分和人工神经网络(ANN)预测非线性部分,结合两种方法综合预测杨梅汁酸度值,通过比较,r RMSEP,B ias的值来检验该方法.其中PLS模型用于寻找与杨梅汁酸度值有关的敏感波段,预测杨梅汁酸度的线性部分,将这些敏感波段对应的光谱吸光度值作为人工神经网络的输入,并将杨梅汁酸度的实际测量值减去PLS模型校正值,获得的差额部分作为神经网络的输出,建立一个差额神经网络预测杨梅汁酸度的非线性部分.46个样本用于建模,30个样本用于预测.结果表明该方法对样本的预测相关系数r=0.939,RMSEP=0.218,B ias=-0.121,好于只使用PLS模型的相关系数r=0.921,RMSEP=0.228,B ias=-0.132.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号