首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to simulate and optically characterize the piezoelectric performance of complementary metal oxide semiconductor (CMOS) compatible microcantilevers based on aluminium nitride (AlN) and manufactured at room temperature. This study should facilitate the integration of piezoelectric micro-electro-mechanical systems (MEMS) such as microcantilevers, in CMOS technology. Besides compatibility with standard integrated circuit manufacturing procedures, low temperature processing also translates into higher throughput and, as a consequence, lower manufacturing costs. Thus, the use of the piezoelectric properties of AlN manufactured by reactive sputtering at room temperature is an important step towards the integration of this type of devices within future CMOS technology standards. To assess the reliability of our fabrication process, we have manufactured arrays of free-standing microcantilever beams of variable dimension and studied their piezoelectric performance. The characterization of the first out-of-plane modes of AlN-actuated piezoelectric microcantilevers has been carried out using two optical techniques: laser Doppler vibrometry (LDV) and white light interferometry (WLI). In order to actuate the cantilevers, a periodic chirp signal in certain frequency ranges was applied between the device electrodes. The nature of the different vibration modes detected has been studied and compared with that obtained by a finite element model based simulation (COMSOL Multiphysics), showing flexural as well as torsional modes. The correspondence between theoretical and experimental data is reasonably good, probing the viability of this high throughput and CMOS compatible fabrication process. To complete the study, X-ray diffraction as well as d33 piezoelectric coefficient measurements were also carried out.  相似文献   

2.
Experimental validation of numerical models developed by the authors to predict the static behaviour of microelectrostatic actuators is described. Cantilever microbeams, currently used in connection with RF-MEMS and micro-scale material testing were analysed. A set of microcantilevers, bending in the plane of the wafer, i.e. in the same plane as the profiling system’s target, was tested. This differs from the popular case of out-of-plane microbeams, usually studied in the literature. Geometry nonlinearity caused by large deflection of the microbeam was investigated and nonlinear coupled formulation of electromechanical equilibrium was performed. Coupled-field analysis was implemented using the Finite Element Method (FEM), to predict displacements and pull-in voltage measured by Fogale Zoomsurf 3D, subsequently plotting the displacement-versus-voltage curve to complete model validation. FEM nonlinear analysis, based on iterative approach with mesh morphing, and FEM non-incremental approach, including a special element proposed by the authors, are compared to the linear solution and to experimental results. Geometry nonlinearity appears relevant in microbeam modelling and requires a nonlinear solution of the coupled problem. Investigative work, which compared the results of 2D and 3D models to experimental data, revealed that some three dimensional effects are significant in model validation, but the 2D approach may be effective in predicting static behaviour provided that at least a microbeam thickness equivalent is adopted.  相似文献   

3.
We present an investigation on the fabrication of synthetic diamond based photon detectors. These devices are made by depositing small gap interdigitated contacts on polycrystalline diamond films grown by Microwave Plasma Enhanced Chemical Vapour Deposition. Gold interdigitated contacts were deposited on the typically rough surface of these films by using both wet etching and unconventional lift-off lithographic processes. These detectors were tested through X-ray irradiation in order to compare their potentialities in obtaining higher performance diamond photoconductive detectors. A better resolution was observed in samples obtained through the lift-off process. In particular for these samples the gap between electrodes could be kept very small and of the order of the grain size, giving higher response due the lower contribution of grain boundary effects.  相似文献   

4.
The characterization of the first in-plane mode of aluminum nitride-actuated piezoelectric microcantilevers was carried out by using electrical and optical techniques. The top electrode of the cantilever was specifically designed to allow for an efficient electrical actuation of these in-plane modes. In order to confirm the in-plane nature of the modal vibration, the detection of the electrically induced movement was performed optically with the help of a stroboscopic microscope. In parallel, resonances were also measured electrically by means of an impedance analyzer. The quality factor and the resonant frequencies of the in-plane modes were estimated from the corresponding measurement data when applying both detection techniques. Our results show quality factor values as high as 3,000 for the first in-plane mode in air.  相似文献   

5.
针对目前国内生产聚晶金刚石复合片(PDC)的企业大多数在表面缺陷检测环节严重依赖于人工检测,存在检测效率低、主观性强等问题,提出了一种基于机器视觉的检测方法替代人工检测.将倒角边缘的崩角缺陷作为检测目标,研究崩角图像的表面特征后,提出了在硬件上使用零角度环形光源突出崩角特征,在检测方式上通过阈值分割、中值滤波进行预处理,然后利用最小二乘法拟合获取倒角圆环的圆心位置和小圆半径并建立掩码,最后通过与(AND)运算提取出崩角信息,进行识别和标记.结果显示:实现对图像中的崩角缺陷自动检测和定位,并且判断标准统一.  相似文献   

6.
A micro hot wire anemometer sensor has been constructed. The process consists in depositing a thin doped polycrystalline silicon layer on silicon substrate, using a micro-machined technique. This paper discusses the reliability and the fabrication flaws of this sensor. The different steps of fabrication are oxidation, deposit, photolithography, chemical attack, ionic implantation and annealing. An additional step, allowing the release of the suspended structures, is added. With each technological process step, a certain number of problems can be met. Each of these problems can potentially give rise to a defect of the final structure. Various tests are carried out on the final structure to make a first approach of the micro flow sensor flaws.  相似文献   

7.
State of the art diamond tools for metal-cutting manufacturing are handcrafted by polishing and grinding of natural diamonds. Tools fabricated by these means are serially made unique copies with a limited variety of shapes. Furthermore, manual fabrication leads to deviation from ideal geometry. We present a novel technique for parallel fabrication of diamond micro tools with high contour accuracy by using lithographic methods followed by a modified ASE-process.  相似文献   

8.
9.
Fabrication and characterization of hydrogel-based microvalves   总被引:1,自引:0,他引:1  
Several microvalves utilizing stimuli-responsive hydrogel materials have been developed. The hydrogel components are fabricated inside microchannels using a liquid phase polymerization process. In-channel processing greatly simplifies device construction, assembly, and operation since the functional components are fabricated in situ and can perform both sensing and actuation functions. Two in situ photopolymerization techniques, "laminar stream mode" and "mask mode," have been explored. Three two-dimensional (2-D) valves were fabricated and tested (response time, pressure drop, maximum differential pressure). In addition, a hydrogel/PDMS three-dimensional (3-D) hybrid valve that physically separates the sensing and regulated streams was demonstrated. Analytical modeling was performed on the 3-D valve. Hydrogel-based microvalves have a number of advantages over conventional microvalves, including relatively simple fabrication, no external power requirement, no integrated electronics, large displacement (185 μm), and large force generation (22 mN)  相似文献   

10.
A growth of single crystal diamond (SCD) microchannels on HPHT diamond substrate has been carried out successfully by a simple and novel method. Firstly, aluminum film was patterned on SCD diamond substrate surface by magnetron sputtering, photolithography and dry etching techniques. Secondly, the aluminum patterns were transferred onto diamond substrate via inductively coupled plasma etching to form grooves on diamond surface. Finally, microchannels were achieved by epitaxial lateral overgrowth of SCD on the surface of prepared substrate by microwave plasma chemical vapor deposition system. After that, fluorescent liquid was introduced to check hollowness of the microchannels. This work provides a simple and time saving method to fabricate SCD microchannels for microfluidic system, which offers a great potential for hard environment applications.  相似文献   

11.
The use of tightly packed arrays of probes can achieve the much desirable goal of increasing the throughput of scanning probe devices. However the proximity of the probes induces coupling in their dynamics, which increases the complexity of the overall device. In this paper we analyze and model the behavior of a pair of electrostatically and mechanically coupled microcantilevers. For the common case of periodic driving voltage, we show that the underlying linearized dynamics are governed by a pair of coupled Mathieu equations. We provide experimental evidence that confirms the validity of the mathematical model proposed, which is verified by finite element simulations as well. The coefficients of electrostatic and mechanical coupling are estimated respectively by frequency identification methods and noise analysis. Finally, we discuss parametric resonance for coupled oscillators and include a mapping of the first order coupled parametric resonance region.  相似文献   

12.
This paper shows a novel method to cultivate cells on a π-shape microcantilever inside a polydimethylsiloxane microfluidic system. Only one lithography step was needed to precisely align and pattern a poly(2-hydroxyethyl methacrylate) hydrogel microstructure, of size 200 × 200 μm, onto a silicon nitride microcantilever inside the PDMS microfluidic device. Gelatin was used as a sacrificial layer to resolve the issue of the microfluidic and hydrogel microstructure sticking together, successfully releasing the microcantilevers. BHK-21 cells were successfully laden and cultivated on the hydrogel microstructures of microcantilevers for 24 h. The optical system consisted of a He–Ne laser, a charge-coupled device camera, and a position-sensitive detector, which was used to measure the deflections of the microcantilevers due to the laden cells. The deflection increased continually during the cell-laden period. Meanwhile, the deflection increased with increasing cell concentration. By repeating the cell-laden and culture experiment three times, the magnitude and trend of deflection of microcantilevers were almost the same. It demonstrates that the microcantilever-based biochip has adequate stability and provides reliable measurement results for drug screening applications in the future.  相似文献   

13.
The development of a thermal switch based on arrays of liquid–metal micro-droplets is presented. Prototype thermal switches are assembled from a silicon substrate on which is deposited an array of 1600 30-μm liquid–metal micro-droplets. The liquid–metal micro-droplet array makes and breaks contact with a second bare silicon substrate. A gap between the two silicon substrates is filled with either air at 760 Torr, air at of 0.5 Torr or xenon at 760 Torr. Heat transfer and thermal resistance across the thermal switches are measured for “on” (make contact) and “off” (break contact) conditions using guard-heated calorimetry. The figure of merit for a thermal switch, the ratio of “off” state thermal resistance over “on” state thermal resistance, Roff/Ron, is 129 ± 43 for a xenon-filled thermal switch that opens 100 μm and 60 ± 17 for an 0.5 Torr air-filled thermal switch that opens 25 μm. These thermal resistance ratios are shown to be markedly higher than values of Roff/Ron for a thermal switch based on contact between polished silicon surfaces. Transient temperature measurements for the liquid–metal micro-droplet switches indicate thermal switching times of less than 100 ms. Switch lifetimes are found to exceed one-million cycles.  相似文献   

14.
Microsystem Technologies - The stability and bifurcations of viscoelastic microcantilevers is investigated via the Kelvin–Voigt scheme and the modified couple stress (MCS) theory. All the...  相似文献   

15.
This article uses finite element design for optimization of piezoresistive Si covered SiO2 microcantilevers. The maximum resistance changes were systematically investigated by varying piezoresistor geometries and doping concentration. Our simulation results show that both cantilever deflection displacement and ΔR/R change decrease when the thickness of piezoresistors increases; the highest sensitivity can be obtained when the piezoresistor length is approximately 2/5 of the SiO2 cantilever length; increase of both Si width and leg width result in decrease in cantilever deflection and sensitivity; the sensitivity of cantilevers with lower doping concentrations is more significant than those with higher doping concentrations. Temperature control is critical for thin piezoresistor in lowering the S/N ratio and increasing the sensitivity.  相似文献   

16.
17.
Microsystem Technologies - Micro electromechanical system resonators (MEMS) are being explored to fulfil the demands of speedy wireless communication circuits, which may be utilized as oscillators...  相似文献   

18.
We present the fabrication and characterization of nanoscale fluidic channels with embedded electrodes. Arrays of 2.25 μm long and 60 nm tall nanochannels with widths ranging from 60 to 500 nm were microfabricated in SiO2 with Au electrodes embedded inside and outside of the nanochannels. The built-in electrodes were able to probe nanochannel conductance via a redox reaction of \textFe(\textCN)63 - /4 - {\text{Fe}}({\text{CN}})_{6}^{3 - /4 - } . Amperometric characterization showed that conductance of nanochannel arrays varied linearly both with the width and number of nanochannels and was in the 10–100 pS range. Further, we show that electrical current was largely diffusion based and could be predicted from channel geometry using standard diffusion equations. We also discuss the potential of such nanochannel arrays as electronic biomolecular sensors and show preliminary streptavidin detection results.  相似文献   

19.
For developing freestanding piezoelectric microcantilevers with low resonant frequency, some critical mechanical considerations, especially cantilever bending, were given in this study. Two strategies, using piezoelectric thick films and adding a stress compensation layer, were calculationally analyzed for mitigating the cantilever bending, and then was applied for the fabrication of PZT freestanding microcantilevers. (100) oriented PZT thick films with the thickness of 6.93 μm were grown on the Pt/SiO2/Si substrate by chemical solution deposition (CSD), and the SiO2 layer with the thickness of 1.0 μm was kept under the PZT layer as a stress compensation layer of the freestanding microcantilevers. The freestanding microcantilevers fabricated with the micromachining process possessed the resonant frequency of 466.1 Hz, and demonstrated no obvious cantilever bending.  相似文献   

20.
Validation of micromechanical systems   总被引:1,自引:0,他引:1  
For a reliable function of micro-mechanical systems the behavior of the used gear wheels is of extreme importance. But up to now there is no general available method for quality assurance of them. In this paper an adoption of the tangential and radial composite inspection as defined in standards for macroscopic gear wheels to the special needs and boundary conditions in micro technology is proposed. It is based on an examination of the differing results if the same gear wheels are mated with varying angles of rotation. Additionally special test rigs are presented which are able to test micro gear wheels. Finally some exemplary results are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号