首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
XGC1 and M3D-C 1 are two fusion plasma simulation codes being developed at Princeton Plasma Physics Laboratory. XGC1 uses the particle-in-cell method to simulate gyrokinetic neoclassical physics and turbulence (Chang et al. Phys Plasmas 16(5):056108, 2009; Ku et al. Nucl Fusion 49:115021, 2009; Admas et al. J Phys 180(1):012036, 2009). M3D-\(C^1\) solves the two-fluid resistive magnetohydrodynamic equations with the \(C^1\) finite elements (Jardin J comput phys 200(1):133–152, 2004; Jardin et al. J comput Phys 226(2):2146–2174, 2007; Ferraro and Jardin J comput Phys 228(20):7742–7770, 2009; Jardin J comput Phys 231(3):832–838, 2012; Jardin et al. Comput Sci Discov 5(1):014002, 2012; Ferraro et al. Sci Discov Adv Comput, 2012; Ferraro et al. International sherwood fusion theory conference, 2014). This paper presents the software tools and libraries that were combined to form the geometry and automatic meshing procedures for these codes. Specific consideration has been given to satisfy the mesh configuration and element shape quality constraints of XGC1 and M3D-\(C^1\).  相似文献   

2.
Robust and accurate detection of the pupil position is a key building block for head-mounted eye tracking and prerequisite for applications on top, such as gaze-based human–computer interaction or attention analysis. Despite a large body of work, detecting the pupil in images recorded under real-world conditions is challenging given significant variability in the eye appearance (e.g., illumination, reflections, occlusions, etc.), individual differences in eye physiology, as well as other sources of noise, such as contact lenses or make-up. In this paper we review six state-of-the-art pupil detection methods, namely ElSe (Fuhl et al. in Proceedings of the ninth biennial ACM symposium on eye tracking research & applications, ACM. New York, NY, USA, pp 123–130, 2016), ExCuSe (Fuhl et al. in Computer analysis of images and patterns. Springer, New York, pp 39–51, 2015), Pupil Labs (Kassner et al. in Adjunct proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing (UbiComp), pp 1151–1160, 2014. doi: 10.1145/2638728.2641695), SET (Javadi et al. in Front Neuroeng 8, 2015), Starburst (Li et al. in Computer vision and pattern recognition-workshops, 2005. IEEE Computer society conference on CVPR workshops. IEEE, pp 79–79, 2005), and ?wirski (?wirski et al. in Proceedings of the symposium on eye tracking research and applications (ETRA). ACM, pp 173–176, 2012. doi: 10.1145/2168556.2168585). We compare their performance on a large-scale data set consisting of 225,569 annotated eye images taken from four publicly available data sets. Our experimental results show that the algorithm ElSe (Fuhl et al. 2016) outperforms other pupil detection methods by a large margin, offering thus robust and accurate pupil positions on challenging everyday eye images.  相似文献   

3.
Some numerical algorithms for elliptic eigenvalue problems are proposed, analyzed, and numerically tested. The methods combine advantages of the two-grid algorithm (Xu and Zhou in Math Comput 70(233):17–25, 2001), the two-space method (Racheva and Andreev in Comput Methods Appl Math 2:171–185, 2002), the shifted inverse power method (Hu and Cheng in Math Comput 80:1287–1301, 2011; Yang and Bi in SIAM J Numer Anal 49:1602–1624, 2011), and the polynomial preserving recovery enhancing technique (Naga et al. in SIAM J Sci Comput 28:1289–1300, 2006). Our new algorithms compare favorably with some existing methods and enjoy superconvergence property.  相似文献   

4.
We propose a new computing model called chemical reaction automata (CRAs) as a simplified variant of reaction automata (RAs) studied in recent literature (Okubo in RAIRO Theor Inform Appl 48:23–38 2014; Okubo et al. in Theor Comput Sci 429:247–257 2012a, Theor Comput Sci 454:206–221 2012b). We show that CRAs in maximally parallel manner are computationally equivalent to Turing machines, while the computational power of CRAs in sequential manner coincides with that of the class of Petri nets, which is in marked contrast to the result that RAs (in both maximally parallel and sequential manners) have the computing power of Turing universality (Okubo 2014; Okubo et al. 2012a). Intuitively, CRAs are defined as RAs without inhibitor functioning in each reaction, providing an offline model of computing by chemical reaction networks (CRNs). Thus, the main results in this paper not only strengthen the previous result on Turing computability of RAs but also clarify the computing powers of inhibitors in RA computation.  相似文献   

5.
6.
Intuitionistic fuzzy set is capable of handling uncertainty with counterpart falsities which exist in nature. Proximity measure is a convenient way to demonstrate impractical significance of values of memberships in the intuitionistic fuzzy set. However, the related works of Pappis (Fuzzy Sets Syst 39(1):111–115, 1991), Hong and Hwang (Fuzzy Sets Syst 66(3):383–386, 1994), Virant (2000) and Cai (IEEE Trans Fuzzy Syst 9(5):738–750, 2001) did not model the measure in the context of the intuitionistic fuzzy set but in the Zadeh’s fuzzy set instead. In this paper, we examine this problem and propose new notions of δ-equalities for the intuitionistic fuzzy set and δ-equalities for intuitionistic fuzzy relations. Two fuzzy sets are said to be δ-equal if they are equal to an extent of δ. The applications of δ-equalities are important to fuzzy statistics and fuzzy reasoning. Several characteristics of δ-equalities that were not discussed in the previous works are also investigated. We apply the δ-equalities to the application of medical diagnosis to investigate a patient’s diseases from symptoms. The idea is using δ-equalities for intuitionistic fuzzy relations to find groups of intuitionistic fuzzified set with certain equality or similar degrees then combining them. Numerical examples are given to illustrate validity of the proposed algorithm. Further, we conduct experiments on real medical datasets to check the efficiency and applicability on real-world problems. The results obtained are also better in comparison with 10 existing diagnosis methods namely De et al. (Fuzzy Sets Syst 117:209–213, 2001), Samuel and Balamurugan (Appl Math Sci 6(35):1741–1746, 2012), Szmidt and Kacprzyk (2004), Zhang et al. (Procedia Eng 29:4336–4342, 2012), Hung and Yang (Pattern Recogn Lett 25:1603–1611, 2004), Wang and Xin (Pattern Recogn Lett 26:2063–2069, 2005), Vlachos and Sergiadis (Pattern Recogn Lett 28(2):197–206, 2007), Zhang and Jiang (Inf Sci 178(6):4184–4191, 2008), Maheshwari and Srivastava (J Appl Anal Comput 6(3):772–789, 2016) and Support Vector Machine (SVM).  相似文献   

7.
In this paper, a new numerical approximation is discussed for the two-dimensional distributed-order time fractional reaction–diffusion equation. Combining with the idea of weighted and shifted Grünwald difference (WSGD) approximation (Tian et al. in Math Comput 84:1703–1727, 2015; Wang and Vong in J Comput Phys 277:1–15, 2014) in time, we establish orthogonal spline collocation (OSC) method in space. A detailed analysis shows that the proposed scheme is unconditionally stable and convergent with the convergence order \(\mathscr {O}(\tau ^2+\Delta \alpha ^2+h^{r+1})\), where \(\tau , \Delta \alpha , h\) and r are, respectively the time step size, step size in distributed-order variable, space step size, and polynomial degree of space. Interestingly, we prove that the proposed WSGD-OSC scheme converges with the second-order in time, where OSC schemes proposed previously (Fairweather et al. in J Sci Comput 65:1217–1239, 2015; Yang et al. in J Comput Phys 256:824–837, 2014) can at most achieve temporal accuracy of order which depends on the order of fractional derivatives in the equations and is usually less than two. Some numerical results are also given to confirm our theoretical prediction.  相似文献   

8.
We use self-reduction methods to prove strong information lower bounds on two of the most studied functions in the communication complexity literature: Gap Hamming Distance (GHD) and Inner Product (IP). In our first result we affirm the conjecture that the information cost of GHD is linear even under the uniform distribution, which strengthens the Ω(n) bound recently shown by Kerenidis et al. (2012), and answers an open problem from Chakrabarti et al. (2012). In our second result we prove that the information cost of IPn is arbitrarily close to the trivial upper bound n as the permitted error tends to zero, again strengthening the Ω(n) lower bound recently proved by Braverman and Weinstein (Electronic Colloquium on Computational Complexity (ECCC) 18, 164 2011). Our proofs demonstrate that self-reducibility makes the connection between information complexity and communication complexity lower bounds a two-way connection. Whereas numerous results in the past (Chakrabarti et al. 2001; Bar-Yossef et al. J. Comput. Syst. Sci. 68(4), 702–732 2004; Barak et al. 2010) used information complexity techniques to derive new communication complexity lower bounds, we explore a generic way in which communication complexity lower bounds imply information complexity lower bounds in a black-box manner.  相似文献   

9.
In this paper we present a secure and efficient transaction protocol that provides the anonymity and can detect the double spending. The proposed payment system is based on the ElGamal encryption scheme, the ElGamal signature scheme and the ElGamal blind signature protocol. We show that our transaction protocol is secure and efficient. We give the definitions of unlinkability and unforgeability of our security model and we prove that the proposed transaction protocol is unforgeable and satisfies the unlinkability property. We show that the proposed system is more efficient, in terms of the computation and communication cost, than the compared payment systems (Eslami et al. in Electron Commer Res Appl 10:59–66, 2011; Chen et al. in Electron Commer Res Appl 10:279–287, 2011; Liu et al. in Proceedings of second European PKI workshop: research and applications. Lecture notes in computer science, vol 3545, pp 206–214, 2005 and Chen et al. in Electron Commer Res Appl 10:673–682, 2011) for a customer who withdraws and spends an e-coin and for the merchant who verifies an electronic coin. Also, the proposed e-cash system is useful for the electronic transactions when the connection between the bank and the merchant is not available during the payment protocol. This means a less bandwidth of the payment protocol and then increases the speed of the electronic transaction.  相似文献   

10.
We study connectivity preserving multivalued functions (Kovalevsky in A new concept for digital geometry, shape in picture, 1994) between digital images. This notion generalizes that of continuous multivalued functions (Escribano et al. in Discrete geometry for computer imagery, lecture notes in computer science, 2008; Escribano et al. in J Math Imaging Vis 42:76–91, 2012) studied mostly in the setting of the digital plane \({\mathbb {Z}}^2\). We show that connectivity preserving multivalued functions, like continuous multivalued functions, are appropriate models for digital morphological operations. Connectivity preservation, unlike continuity, is preserved by compositions, and generalizes easily to higher dimensions and arbitrary adjacency relations.  相似文献   

11.
In this paper we investigate the problem of partitioning an input string T in such a way that compressing individually its parts via a base-compressor C gets a compressed output that is shorter than applying C over the entire T at once. This problem was introduced in Buchsbaum et al. (Proc. of 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 175–184, 2000; J. ACM 50(6):825–851, 2003) in the context of table compression, and then further elaborated and extended to strings and trees by Ferragina et al. (J. ACM 52:688–713, 2005; Proc. of 46th IEEE Symposium on Foundations of Computer Science, pp. 184–193, 2005) and Mäkinen and Navarro (Proc. of 14th Symposium on String Processing and Information Retrieval, pp. 229–241, 2007). Unfortunately, the literature offers poor solutions: namely, we know either a cubic-time algorithm for computing the optimal partition based on dynamic programming (Buchsbaum et al. in J. ACM 50(6):825–851, 2003; Giancarlo and Sciortino in Proc. of 14th Symposium on Combinatorial Pattern Matching, pp. 129–143, 2003), or few heuristics that do not guarantee any bounds on the efficacy of their computed partition (Buchsbaum et al. in Proc. of 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 175–184, 2000; J. ACM 50(6):825–851, 2003), or algorithms that are efficient but work in some specific scenarios (such as the Burrows-Wheeler Transform, see e.g. Ferragina et al. in J. ACM 52:688–713, 2005; Mäkinen and Navarro in Proc. of 14th Symposium on String Processing and Information Retrieval, pp. 229–241, 2007) and achieve compression performance that might be worse than the optimal-partitioning by a Ω(log?n/log?log?n) factor. Therefore, computing efficiently the optimal solution is still open (Buchsbaum and Giancarlo in Encyclopedia of Algorithms, pp. 939–942, 2008). In this paper we provide the first algorithm which computes in O(nlog?1+ε n) time and O(n) space, a partition of T whose compressed output is guaranteed to be no more than (1+ε)-worse the optimal one, where ε may be any positive constant fixed in advance. This result holds for any base-compressor C whose compression performance can be bounded in terms of the zero-th or the k-th order empirical entropy of the text T. We will also discuss extensions of our results to BWT-based compressors and to the compression booster of Ferragina et al. (J. ACM 52:688–713, 2005).  相似文献   

12.
Flutter shutter (coded exposure) cameras allow to extend indefinitely the exposure time for uniform motion blurs. Recently, Tendero et al. (SIAM J Imaging Sci 6(2):813–847, 2013) proved that for a fixed known velocity v the gain of a flutter shutter in terms of root means square error (RMSE) cannot exceeds a 1.1717 factor compared to an optimal snapshot. The aforementioned bound is optimal in the sense that this 1.1717 factor can be attained. However, this disheartening bound is in direct contradiction with the recent results by Cossairt et al. (IEEE Trans Image Process 22(2), 447–458, 2013). Our first goal in this paper is to resolve mathematically this discrepancy. An interesting question was raised by the authors of reference (IEEE Trans Image Process 22(2), 447–458, 2013). They state that the “gain for computational imaging is significant only when the average signal level J is considerably smaller than the read noise variance \(\sigma _r^2\)” (Cossairt et al., IEEE Trans Image Process 22(2), 447–458, 2013, p. 5). In other words, according to Cossairt et al. (IEEE Trans Image Process 22(2), 447–458, 2013) a flutter shutter would be more efficient when used in low light conditions e.g., indoor scenes or at night. Our second goal is to prove that this statement is based on an incomplete camera model and that a complete mathematical model disproves it. To do so we propose a general flutter shutter camera model that includes photonic, thermal (The amplifier noise may also be mentioned as another source of background noise, which can be included w.l.o.g. in the thermal noise) and additive [The additive (sensor readout) noise may contain other components such as reset noise and quantization noise. We include them w.l.o.g. in the readout.] (sensor readout, quantification) noises of finite variances. Our analysis provides exact formulae for the mean square error of the final deconvolved image. It also allows us to confirm that the gain in terms of RMSE of any flutter shutter camera is bounded from above by 1.1776 when compared to an optimal snapshot. The bound is uniform with respect to the observation conditions and applies for any fixed known velocity. Incidentally, the proposed formalism and its consequences also apply to e.g., the Levin et al. motion-invariant photography (ACM Trans Graphics (TOG), 27(3):71:1–71:9, 2008; Method and apparatus for motion invariant imag- ing, October 1 2009. US Patent 20,090,244,300, 2009) and variant (Cho et al. Motion blur removal with orthogonal parabolic exposures, 2010). In short, we bring mathematical proofs to the effect of contradicting the claims of Cossairt et al. (IEEE Trans Image Process 22(2), 447–458, 2013). Lastly, this paper permits to point out the kind of optimization needed if one wants to turn the flutter shutter into a useful imaging tool.  相似文献   

13.
By multiple realignments of density matrices, we present a new separability criterion for the multipartite quantum state, which includes the computable cross-norm or realignment criterion and the multipartite partial realignment criterion as special cases. An example is used to show that the new criterion can be more efficient than the corresponding multipartite realignment criteria given in Horodecki et al. (Open Syst Inf Dyn 13:103–111, 2006) and Shen et al. (Phys Rev A 92:042332, 2015).  相似文献   

14.
The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of the spectral information and spatial structure information of high-resolution remote sensing image is the key to the processing and recognition of high-resolution remote sensing data. In this paper, the adaptive multipoint moment estimation (AMME) stochastic optimization algorithm is proposed for the first time by using the finite lower-order moments and adding the estimating points. This algorithm not only reduces the probability of local optimum in the learning process, but also improves the convergence rate of the convolutional neural network (Lee Cun et al. in Advances in neural information processing systems, 1990). Second, according to the remote sensing image with characteristics of complex background and small sensitive targets, and by automatic discovery, locating small targets, and giving high weights, we proposed a feature extraction method named weighted pooling to further improve the performance of real-time image recognition. We combine the AMME and weighted pooling with the spatial pyramid representation (Harada et al. in Comput Vis Pattern Recognit 1617–1624, 2011) algorithm to form a new, multiscale, and multilevel real-time image recognition model and name it weighted spatial pyramid networks (WspNet). At the end, we use the MNIST, ImageNet, and natural disasters under remote sensing data sets to test WspNet. Compared with other real-time image recognition models, WspNet achieve a new state of the art in terms of convergence rate and image feature extraction compared with conventional stochastic gradient descent method [like AdaGrad, AdaDelta and Adam (Zeiler in Comput Sci, 2012; Kingma and Ba in Comput Sci, 2014; Duchi et al. in J Mach Learn Res 12(7):2121–2159, 2011] and pooling method [like max-pooling, avg-pooling and stochastic-pooling (Zeiler and Fergus in stochastic-pooling for regularization of deep convolutional neural networks, 2013)].  相似文献   

15.
The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043, 2003; Comput Methods Appl Mech Eng 193(6–8):679–699, 2004; Comput Methods Appl Mech Eng 196:3927–3950, 2007; Int J Numer Methods Eng 76:1250–1279, 2008; Comput Methods Appl Mech Eng 199:79–101, 2010; Arch Comput Methods Eng 1–17. doi: 10.1007/s11831-013-9092-6, 2013; Comput Mech Eng Sci 98(3):261–277, 2014; Comput Mech 54:171–191, 2014; J Manuf Sci Eng ASME doi: 10.1115/1.4029327, 2015; CIRP J Manuf Sci Technol 10:77–83, 2015; Comput Mech 56:613–630, 2015; Introduction to computational micromechanics. Springer, Berlin, 2008; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007; Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.  相似文献   

16.
Testing for stationarity and unit roots has become standard practice in time series analysis and while many tests have known asymptotic properties, their small sample performance is sometimes less-well understood. Researchers rely on response surface regressions to provide small sample critical values for use in applied work. In this paper an updated series of Monte Carlo experiments provides response surface estimates of the critical 1, 5, and 10 % values of the Kwiatkowski et al. (J Econ 54: 91–115, 1992) test of stationarity and its generalization by Hobijn et al. (Stat Neerlandica 58(4): 483–502, 2004).  相似文献   

17.
In the majority of the existing preventive optimization models only costs related to maintenance actions are accounted for, while breakdown and operational costs are usually ignored. Liao et al. (J Intell Manuf 21(6):875–884, 2010) proposed a preventive maintenance model to deal with this shortcoming. In the present paper, we revisit and discuss the results provided in Liao et al. (2010) and point out some inconsistencies in the maintenance optimization model proposed therein. Accordingly, we develop a new maintenance optimization model and discuss some of its main cost components. Furthermore, optimality conditions are also formally investigated and a solution method is provided. Numerical experiments are conducted to illustrate the validity of the proposed approach and results are compared with those provided in the original paper by Liao et al. (2010).  相似文献   

18.
The aim of Content-based Image Retrieval (CBIR) is to find a set of images that best match the query based on visual features. Most existing CBIR systems find similar images in low level features, while Text-based Image Retrieval (TBIR) systems find images with relevant tags regardless of contents in the images. Generally, people are more interested in images with similarity both in contours and high-level concepts. Therefore, we propose a new strategy called Iterative Search to meet this requirement. It mines knowledge from the similar images of original queries, in order to compensate for the missing information in feature extraction process. To evaluate the performance of Iterative Search approach, we apply this method to four different CBIR systems (HOF Zhou et al. in ACM international conference on multimedia, 2012; Zhou and Zhang in Neural information processing—international conference, ICONIP 2011, Shanghai, 2011, HOG Dalal and Triggs in IEEE computer society conference on computer vision pattern recognition, 2005, GIST Oliva and Torralba in Int J Comput Vision 42:145–175, 2001 and CNN Krizhevsky et al. in Adv Neural Inf Process Syst 25:2012, 2012) in our experiments. The results show that Iterative Search improves the performance of original CBIR features by about \(20\%\) on both the Oxford Buildings dataset and the Object Sketches dataset. Meanwhile, it is not restricted to any particular visual features.  相似文献   

19.
We present a PDE-based approach for finding optimal paths for the Reeds–Shepp car. In our model we minimize a (data-driven) functional involving both curvature and length penalization, with several generalizations. Our approach encompasses the two- and three-dimensional variants of this model, state-dependent costs, and moreover, the possibility of removing the reverse gear of the vehicle. We prove both global and local controllability results of the models. Via eikonal equations on the manifold \(\mathbb {R}^d \times {\mathbb {S}}^{d-1}\) we compute distance maps w.r.t. highly anisotropic Finsler metrics, which approximate the singular (quasi)-distances underlying the model. This is achieved using a fast-marching (FM) method, building on Mirebeau (Numer Math 126(3):515–557, 2013; SIAM J Numer Anal 52(4):1573–1599, 2014). The FM method is based on specific discretization stencils which are adapted to the preferred directions of the Finsler metric and obey a generalized acuteness property. The shortest paths can be found with a gradient descent method on the distance map, which we formalize in a theorem. We justify the use of our approximating metrics by proving convergence results. Our curve optimization model in \(\mathbb {R}^{d} \times \mathbb {S}^{d-1}\) with data-driven cost allows to extract complex tubular structures from medical images, e.g., crossings, and incomplete data due to occlusions or low contrast. Our work extends the results of Sanguinetti et al. (Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications LNCS 9423, 2015) on numerical sub-Riemannian eikonal equations and the Reeds–Shepp car to 3D, with comparisons to exact solutions by Duits et al. (J Dyn Control Syst 22(4):771–805, 2016). Numerical experiments show the high potential of our method in two applications: vessel tracking in retinal images for the case \(d=2\) and brain connectivity measures from diffusion-weighted MRI data for the case \(d=3\), extending the work of Bekkers et al. (SIAM J Imaging Sci 8(4):2740–2770, 2015). We demonstrate how the new model without reverse gear better handles bifurcations.  相似文献   

20.
Building upon recent results obtained in Causley and Christlieb (SIAM J Numer Anal 52(1):220–235, 2014), Causley et al. (Math Comput 83(290):2763–2786, 2014, Method of lines transpose: high order L-stable O(N) schemes for parabolic equations using successive convolution, 2015), we describe an efficient second-order, unconditionally stable scheme for solving the wave equation, based on the method of lines transpose (MOL\(^T\)), and the resulting semi-discrete (i.e. continuous in space) boundary value problem. In Causley and Christlieb (SIAM J Numer Anal 52(1):220–235, 2014), unconditionally stable schemes of high order were derived, and in Causley et al. (Method of lines transpose: high order L-stable O(N) schemes for parabolic equations using successive convolution, 2015) a high order, fast \(\mathcal {O}(N)\) spatial solver was derived, which is matrix-free and is based on dimensional-splitting. In this work, are interested in building a wave solver, and our main concern is the development of boundary conditions. We demonstrate all desired boundary conditions for a wave solver, including outflow boundary conditions, in 1D and 2D. The scheme works in a logically Cartesian fashion, and the boundary points are embedded into the regular mesh, without incurring stability restrictions, so that boundary conditions are imposed without any reduction in the order of accuracy. We demonstrate how the embedded boundary approach works in the cases of Dirichlet and Neumann boundary conditions. Further, we develop outflow and periodic boundary conditions for the MOL\(^T\) formulation. Our solver is designed to couple with particle codes, and so special attention is also paid to the implementation of point sources, and soft sources which can be used to launch waves into waveguides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号