首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the development of an artificial hair cell (AHC) sensor with design inspired by biological hair cells. The sensor consists of a silicon cantilever beam with a high-aspect-ratio cilium attached at the distal end. Sensing is based on silicon piezoresistive strain gauge at the base of the cantilever. The cilium is made of photodefinable SU-8 epoxy and can be up to 700-mum tall. In this paper, we focus on flow-sensing applications. We have characterized the performance of the AHC sensor both in water and in air. For underwater applications, we have characterized the sensor under two flow conditions: steady-state laminar flow (dc flow) and oscillatory flow (ac flow). The detection limit of the sensor under ac flow in water is experimentally established to be below 1 mm/s. A best case angular resolution of 2.16deg is also achieved for the sensor's yaw response in air.  相似文献   

2.
模仿昆虫感觉毛的结构,设计制备了表面对称电极含金属芯PVDF气流传感器SMPF(Symmetric Metal core PVDF Fiber).利用自制的拉制纤维设备,制备了SMPF胚体.在表面涂镀对称电极后,经过高温极化、电极封装等工艺后,成功制备了SMPF气流传感器.基于第1类压电方程和流体力学理论,建立了悬臂梁结构的SMPF气流传感模型,分析了传感器输出信号与纤维长度、气流速度以及气流作用方向之间的关系.将悬臂梁结构的SMPF安置在气流流场中,进行冲击气流测试实验.实验结果表明,SMPF气流传感器的输出信号与纤维长度成非线性关系,与气流速度成平方关系,与气流作用方向成"8"字形关系.实验结果验证了理论模型,表明SMPF传感器能够感知气流的速度和作用方向,具有较广泛的工程应用前景.  相似文献   

3.
The Micro-Electro-Mechanical System Coriolis mass flow sensor uses a kind of in-plane comb-shaped capacitor to detect the vibration of tube containing the micro flow information. This paper takes the deflection of the micro tube caused by Coriolis force into account and models the in-plane comb-shaped capacitor of the sensor based on the electrostatic field method. Then the modulation and demodulation of the output capacitive signals are described in detail. The theoretical waveforms obtained by substituting the actual parameters into the models are consistent with the accepted conformal mapping method and match with the sampling signals, which attest the two models. According to the actual flow calibration experiment and the preliminary phase shift calculation, the measurement accuracy of the micro flow sensor reaches ±1.5 % with the repeatability of 0.75 % within 0–1.2 g/h flow range.  相似文献   

4.
The influence of an improved magnetic core on the micro fluxgate sensor about sensitivity and power consumption is investigated and discussed in this paper. We have fabricated the micro solenoid fluxgate sensors based on the MEMS technologies, with the electroplating permalloy cores, which are easy to process and used in common; and the amorphous soft magnetic ribbon cores, which have better soft magnetic performances but be hard to be integrated, respectively. Four magnetic core structures are designed, including rectangular structure, unequal width rectangular structure, multi rectangular ring structure and spiral structure. Spiral structure can improve the performances of the fluxgate sensor significantly, both sensitivity and power consumption. The micro fluxgate sensors with the amorphous soft magnetic ribbon cores are promoted in all aspects than those with the electroplating permalloy cores, including ultra low power consumption of 2.4 mW with unequal width rectangular structure, and high sensitivity of 118 V/T with rectangular structure in wide linear range of 0–800 μT.  相似文献   

5.
Photosensitive glasses are well known as materials which are micro structurable with a high aspect ratio of 20:1. Typical applications are micro mechanical, fluidic and optical components due to the very good chemical, thermal and mechanical stability of this material. Currently the aim of the work is the development of micro structured clichés made from photosensitive glass for the gravure printing of electrically functionalised inks on flexible substrates. Glass clichés with a geometrical variation of recessed cells were fabricated and tested regarding the chemical and mechanical stability using process comparable conditions. Printing tests using particle less and particle loaded electrically functionalised inks were carried out to investigate the influence of cell geometry on printed ink layers. It was found that precise dot structures will be printable if cell openings are <80 μm and cell depths are <30 μm. Resulting from this ITO was printed on flexible glass substrates with a thickness of 30 μm for high temperature treatments.  相似文献   

6.
《Ergonomics》2012,55(12):1841-1849
Objective: This paper describes the development and application of a novel multi-axis hand dynamometer for quantifying 2D grip force magnitude and direction in the flexion-extension plane of the fingers. Methods: A three-beam reconfigurable form dynamometer, containing two active beams for measuring orthogonal forces and moments regardless of point of force application, was designed, fabricated and tested. Maximum grip exertions were evaluated for 16 subjects gripping cylindrical handles varying in diameter. Results: Mean grip force magnitudes were 231 N (SD = 67.7 N), 236 N (72.9 N), 208 N (72.5 N) and 158 N (45.7 N) for 3.81 cm, 5.08 cm, 6.35 cm and 7.62 cm diameter handles, respectively. Grip force direction rotated clockwise and the centre of pressure moved upward along the handle as handle diameter increased. Conclusions: Given that the multi-axis dynamometer simultaneously measures planar grip force magnitude and direction, and centre of pressure along the handle, this novel sensor design provides more grip force characteristics than current sensor designs that would improve evaluation of grip characteristics and model-driven calculations of musculoskeletal forces from dynamometer data.  相似文献   

7.
This paper describes the design and fabrication of a flexible three-axial tactile sensor array using advanced polyimide micromachining technologies. The tactile sensor array is comprised of sixteen micro force sensors and it measures 13 mm × 18 mm. Each micro force sensor has a square membrane and four strain gauges, and its force capacity is 0.6 N in the three-axial directions. The optimal positions of the strain gauges are determined by the strain distribution obtained form finite element analysis (FEA). The normal and shear forces are detected by combining responses from four thin-film metal strain gauges embedded in a polyimide membrane. In order to acquire force signals from individual micro force sensors, we fabricated a PCB based on a multiplexer, operational amplifier and microprocessor with CAN network function. The sensor array is tested from the evaluation system with a three-component load cell. The developed sensor array can be applied in robots’ fingertips, as well as to other electronic applications with three-axial force measurement and flexibility keyword requirements.  相似文献   

8.
为了探索平板微热管的传热特性,了解微热管内不同温度区间的蒸汽传输特性,开展了热式气体微流量传感器及其检测系统的设计。设计了一种便于探索最佳温度测量点的热式微流量传感器结构,利用MEMS工艺进行加工制作,在不同环境温度下对其性能进行了测试,得到了环境温度与热式微流量传感器性能的关系。基于MSP430单片机和C#语言自主开发了流量传感器检测系统,可对一定范围内的流量进行实时检测,并实时绘制流速随时间的变化曲线。研究表明,采用本文设计的热式微流量传感器结构,可以检测高于室温环境下的微流量气体,并可通过提高加热器温度或改变测温电阻对的测量位置来提高测量灵敏度。  相似文献   

9.
设计、研制了集成有微泵、微沟道、微流量传感器、温度传感器的微流体测控芯片.采用有限元软件ANSYS模拟分析了将其作为冷却芯片时微沟道的散热作用,分析确定了芯片上各元件的结构.该集成芯片为硅-玻璃结构,在硅片上,利用ICP法刻蚀无阀微泵泵体和微沟道;在7740玻璃片上,以溅射、剥离法制作微流量和温度传感器;图形精确对准后硅/玻璃以静电键合方法封接.无阀微泵采用压电元件驱动.测试结果表明:集成芯片具有冷却功能,循环水的流速最大可达25.4mm/s.  相似文献   

10.
There have been technical limitations to manufacture microstructures due to difficulty of demolding during replication process of high aspect ratio microstructure in mass production technologies. In the present study, the fabrication of a novel sacrificial micro mold insert and powder injection molding process using such a micro mold insert is proposed and developed. It utilizes a synchrotron radiation to fabricate the shape of polymer based sacrificial mold inserts and then these mold inserts were exposed at X-ray once more to adjust its solubility. This second X-ray exposure facilitates dissolving of mold inserts instead of demolding process which have difficulties like pattern collapses or defects in case of precise replication process. In this manner, severe problems of demolding process in conventional mass production technologies can be efficiently overcome. To verify the usefulness of the proposed technique, polymer based micro mold inserts with several tens of micrometer sized structure for piezoelectric sensor applications were fabricated using X-ray micromachining process radiated synchrotron. The solubility of mold inserts were optimized by the second X-ray exposure without an X-ray mask and then subsequent powder injection molding process was utilized with a piezoelectric based material. Finally, piezoelectric ceramics with micrometer-scale and high aspect ratio of 5 were successfully fabricated, verifying that the present sacrificial mold system is useful for the precise replication process such as the fabrication of microstructure with high aspect ratio or complicated structure.  相似文献   

11.
A flexible capacitive tactile sensor with adjustable characteristics, i.e., measurement range and sensitivity, has been developed. The proposed sensor is designed for large pressure measurement; therefore, polydimethylsiloxane (PDMS) material is selected as the material of the dielectric layer between the parallel plate electrodes of the sensor. Since the elasticity of the PDMS material can be adjusted by the mixing ratio of PDMS pre-polymer and curing agent during formation, sensors in different measurement ranges, i.e., 240–1,000 and 400–3,000 kPa, and corresponding sensitivities, i.e., 2.24 and 0.28 %/MPa, were respectively constructed and demonstrated. These measurement ranges are suitable for most of the biomechanical applications, especially for plantar pressure measurement. Moreover, because the output of the sensor, i.e., capacitance, is highly influenced by the dimension of the sensor structure, each sensor consists of four independent capacitance elements. The output of each sensor is averaged by four capacitances for single force measurement. This could improve the measurement accuracy in practical situation. Also, linearity of the measurement response could be enhanced and it was shown by the R-squared values in two measurement ranges, i.e., 0.9751 and 0.9881, respectively. The proposed sensor is flexible and miniaturized and has the potential to be applied to biomechanical applications.  相似文献   

12.
设计与制造了一种高灵敏度的硅微机械陀螺。陀螺用静电来驱动,用连接成惠斯顿电桥的压阻式力敏电阻应变计来检测。主梁、微梁 质量块结构实现了高灵敏度。比较硬的主梁提供了一定的机械强度,并且提供了高共振频率。微梁很细,检测时微梁沿轴向直拉直压。力敏电阻应变计就扩散在微梁上,质量块很小的挠动就能在微梁上产生很大的应力,输出很大的信号。5V条件下,陀螺检测部分的理论灵敏度达到27.45mV/gn。压阻式四端器件用来监测驱动振幅,可以反馈补偿压阻的温度系数。检测模态的Q值达260使陀螺能在大气下工作。陀螺利用普通的n型硅片制造,为了刻蚀高深宽比的结构,使用了深反应离子刻蚀(DRIE)工艺。  相似文献   

13.
The filliform hairs of crickets are among the most sensitive flow sensing elements in nature. The high sensitivity of these hairs enables crickets in perceiving tiny air-movements which are only just distinguishable from noise. This forms our source of inspiration to design highly-sensitive array system made of artificial hair sensors for flow pattern observation i.e. flow camera. The realization of such high-sensitive hair sensor requires designs with low thermo-mechanical noise to match the detection-limit of crickets’ hairs. Here we investigate the damping factor in our artificial hair-sensor using different methods, as it is the source of the thermo-mechanical noise in MEMS structures. The theoretical analysis was verified with measurements in different conditions to estimate the damping factor. The results show that the damping factor of the artificial hair sensor as estimated in air is in the range of 10?12 N m/rad s?1, which translates into a 93 μm/s threshold airflow velocity.  相似文献   

14.
Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of channel and its impacts on not only the shear field but also the wall-effect lift force near the wall region. In this study, particle focusing dynamics inside trapezoidal straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-lateral movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio, channel aspect ratio, and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Remarkably, an almost complete transition of major focusing from the longer side wall to the shorter side wall was found for large-sized particles of clogging ratio K ~ 0.9 (K = a/Hmin) when Re increased noticeably to ~ 650. Finally, based on our findings, a trapezoidal straight channel along with a bifurcation was designed and applied for continuous filtration of a broad range of particle size (0.3 < K < 1) exiting through the longer wall outlet with ~ 99% efficiency (Re < 100).  相似文献   

15.
This work presents the development of a meso-scale machine tool with a nanometer resolution. The newly developed meso-scale machine tool consists of a pagoda structure for Z-axis, four HR8 ultrasonic motors, three linear encoders with a resolution of 2 nm, a coaxial counter-balance system, a XY coplanar positioning stage, a rotary stage, a Galil 4-axis motion control card, an industrial PC and a CCD camera system. The optimal geometrical dimensions of the pagoda structure have been determined by ANSYS software. The designed meso-scale machine tool is equipped with an X–Y coplanar positioning stage with nanometer resolution. The coplanar stage developed by National Taiwan University was integrated with two linear encoders, so that a two-axis closed-loop control was possible. A circular positioning test with the radius of 1 mm using the developed stage was tested, and the overall circular positioning error was about 83 nm based on the test results. The micro V-grooves and the micro pyramid cutting tests of the polished oxygen free copper using a single crystal diamond tool on the developed meso-scale machine tool have been performed. The cutting tests under various combination of the depth of cut and cutting speed have been carried out. It revealed that the cutting speed had no great influence on the cutting force. The measured cutting forces for the depth of cut of 5, 10, 15 μm were 1.2, 1.6 and 2.4 N, respectively. The results showed the meso-scale machining tool can be used in micro pyramid structures manufacturing.  相似文献   

16.
Micro injection molding for mass production using LIGA mold inserts   总被引:1,自引:0,他引:1  
Micro molding is one of key technologies for mass production of polymer micro parts and structures with high aspect ratios. The authors developed a commercially available micro injection molding technology for high aspect ratio microstructures (HARMs) with LIGA-made mold inserts and pressurized CO2 gasses. The test inserts made of nickel with the smallest surface details of 5 μm with structural height of 15 μm were fabricated by using LIGA technology. High surface quality in terms of low surface roughness of the mold inserts allowed using for injection molding. Compared to standard inserts no draft, which is required to provide a proper demolding, was formed in the inserts. To meet higher economic efficiency and cost reduction, a fully electrical injection molding machine of higher accuracy has been applied with dissolving CO2 gasses into molten resin. The gasses acts as plasticizer and improves the flowability of the resin. Simultaneously, pressurizing the cavity with the gasses allows high replication to be obtained. Micro injection molding, using polycarbonate as polymer resins, with the aspect ratio of two was achieved in the area of 28 × 55 mm2 at the cycle time of 40 s with CO2 gasses, in contrast to the case of the aspect ratio of 0.1 without the gasses.  相似文献   

17.
This paper reports a novel design for electrostatic microgrippers. The new structure utilizes rotary comb actuators to solve the pull-in problem of microgrippers during large displacement manipulation and therefore avoids the widely used conversion systems which necessitate a high driving voltage. The gripper is fabricated using a SOI process with a 60 μm structural layer. Test results show the gripper obtained a displacement of 94 μm with an applied voltage of 100 V. An animal hair is gripped to demonstrate the applicability of the gripper for micro object manipulations.  相似文献   

18.
An amphibious mobile robot relies on effective sensing ability to adapt itself in complicated amphibious environments. In this paper, we present a multifunctional whisker-like touching sensor with low energy consumption, inspired by amphibious animals. The sensor comprises a leverage system and a two-dimensional position tracing system, transforming the moving position of biowhisker to a changing laser spot coordinates. On land, the sensor driven by a motor is able to track the movement of biowhisker directly, telling the change of contact position, to sense nearby objects and explore their surface by touching. In underwater environment, the sensor can obtain in real-time external flow direction and velocity by passive impulsion. Testing results showed that our prototype can sense flow or drag force direction in 360° exactly, and tell flow velocity under 1 m/s, it can also recognize line or arc edges of obstacle correctly by touching.  相似文献   

19.
As a classic weak magnetic field sensor, the fluxgate sensors have great potential application in many fields. This paper presents four kinds of the micro planar double-axis fluxgate sensors based on the MEMS technologies, which have different core materials and core structures. The core materials include electroplated permalloy, Co-based amorphous ribbon and Fe-based amorphous ribbon, and the core structures include single-layer open magnetic loop structure and double-layer closed magnetic loop structure. The sensor with closed double-layer Fe-based ribbon core exhibits a best sensitivity of 238 V/T due to reducing the magnetic flux leakage. The results show that the magnetic core with closed magnetic loop, high permeability and high saturation induction density will help increase the sensitivity of the micro double-axis fluxgate sensor.  相似文献   

20.
This paper presents the first silicon-flow sensor based on lift force. The sensor is a bulk-micromachined airfoil structure that uses the lift force as a sensing principle. The lift force acts normal to the flow in contrast to drag-force sensor types, where the force acts in the flow direction. The sensor utilizes the special distribution of the lift force along the length of the sensor structure. Since the sensor, like an airfoil, is mounted at a small angle to the flow, it induces very little flow disturbance. The sensor consists of two plates connected to a center beam. Each plate is 5×5-mm square with a thickness of 30 μm. The flow-induced forces deflect the two plates in the same direction, but with different magnitude. The deflections are detected by polysilicon strain gauges. The differential mode bridge makes the sensor insensitive to common mode deflection, e.g., acceleration forces. The lift-force principle is characterized using fundamental airfoil theory. The sensor has been experimentally verified, and a flow sensitivity of 7.4 μV/V/(m/s)2 has been measured in both flow directions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号