首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this study, we investigate a novel metallic microgripper which is able to grasp and transport nano particles (nano tubes/wires) and release them on desirable substrate by vibrating the gripper arms. This microgripper consists of a chevron actuator to grip nano object electrothermally and interdigited comb drive systems to generate vibration at the gripper arms electrostatically. Metallic (nickel) properties enable the chevron actuator to close the gap and pick the nano particle at low voltage and temperature. In order to reduce the out of plane bending during operation and also increase the gripping force, thickness of the nickel layer must be increased, hence electroplating process is proposed for deposition of nickel layer. To generate vibration at the end effectors, comb drive systems are stimulated by applying two voltage signals at desired resonant frequency to the stators. Practically, by sweeping the frequency of these signals around the resonant frequency the end effectors start vibrating. The vibration results in overcoming the adhesion forces due to inertial effects.  相似文献   

2.
一种集成微力检测的压电式微夹钳   总被引:3,自引:0,他引:3  
针对微装配任务设计了一种双悬臂梁结构的压电双晶片微夹钳,该微夹钳由两个压电双晶片驱动.建立了压电双晶片的复合梁模型,并对它的微位移—电压特性、夹持力—应变特性进行了数学分析.通过检测悬臂梁根部的应变信号实现对微夹钳夹持力的检测.实验证明该微夹钳工作可靠,能够满足微装配机器人装配任务的要求.  相似文献   

3.
This paper presents design and simulation of a novel electrostatic microelectromechanical systems gripper with an integrated capacitive contact sensor. Moreover, this microgripper is able to employ vibration to release micro objects (cells) actively. Lateral comb drive system is used to close the gap between the gripper arms and hold the objects while the transverse comb differential capacitances act as a contact sensor to prevent damaging the fragile micron-sized particles specifically biological cells. In addition, the capability of the microgripper in generating vibration at the end-effectors electrostatically is an advantage to facilitate releasing process by overbalancing the adhesion forces between the particle and the gripper arm. Finite element analysis based simulations are carried out to estimate the behavior of the microgripper while the standard SOI-MUMPs micromachining process is proposed for fabrication of the microgripper.  相似文献   

4.
Microgrippers created in microstructurable glass   总被引:3,自引:0,他引:3  
 In this paper a new microgripper will be presented. The specific feature is the microfabrication based on a UV-lithographic process in microstructurable, photosensitive glass. Technological and manufacturing problems of the gripper will be described. The developed microgripper is actuated by a piezoelectric ceramic (monomorph). Glass microstructures are used as solid state hinges. With the special design of the gripper it is possible to realise a high distance ratio. The deflection of the gripping arms is some hundred micrometers. The gripping forces are a few mN up to 50 mN. The new grippers were fabricated and tested successfully. Received: 20 December 1996/Accepted: 9 January 1997  相似文献   

5.
This paper presents a detail modeling, finite element analysis and testing results of MEMS based electrostatically actuated microgripper. Interdigitated lateral comb pairs have been used to actuate the microgripper. The microgripper is optimized using standard SOI-MUMPs technology in L-Edit of MEMS-Pro with dual jaws actuation at low voltages. Coupled electromechanical finite element analysis performed in COVENTOR-WARE shows total displacement of 15.5 μm at jaws tip at 50 V, which is quite comparable to experimental result of 17 μm displacement at the tip of gripper jaw for the same voltage. Micromanipulation experiments have successfully demonstrated the gripping, holding micro-objects between 53 and 70 μm in size. The simulated model is used to study detail profile of Von Mises stresses and deformations in the model. It is noted that maximum stress in microgripper is 200 MPa which is much smaller than yield stress of 7 GPa. The slight difference between finite element analysis and experimental results is because of small variations in process material parameters. The total size of gripper is 5.03 × 6.5 mm2.  相似文献   

6.
The aim of this work was to design and demonstrate a dexterous anthropomorphic mobile robotic arm with nine degrees of freedom using readily available low-cost components to perform different object-picking tasks for immobile patients in developing nations. The robotic arm consists of a shoulder, elbow, wrist and five-finger gripper. It can perform different gripping actions, such as lateral, spherical, cylindrical and tip-holding gripping actions using a five-finger gripper; each finger has three movable links. The actuator used for the robotic arm is a high torque dc motor coupled with a gear assembly for torque amplification, and the five-finger gripper consists of five cables placed like tendons in the human arm. The robotic arm utilizes a controller at every link to trace the desired trajectory with high accuracy and precision. Digital implementation of the control algorithm is done on an Atmel Atmega-16 microcontroller using trapezoidal approximation and Newton's backward difference methods. The arm can be programmed or controlled manually to perform a variety of object-picking tasks. A prototype of the robotic arm was constructed, and test results on a variety of object-picking tasks are presented.  相似文献   

7.
显微外科手术机器人手指系统的研究与开发   总被引:1,自引:0,他引:1  
显微外科手术机器人手指系统是在显微外科手术机器人(妙手系统)的研制过程中,针对手术的自身特点及操作要求而自主开发的.该手指系统体积小、重量轻、夹持力大、机构精简、可靠性高,可以准确实现工具的旋转与开合,能够迅速地更换末端手术工具.通过一系列的试验测试及动物试验的研究,结果表明该手指系统的设计是成功的,能够满足显微外科手术的操作要求.  相似文献   

8.
9.

Microgrippers are commonly used for micromanipulation of micro-objects with dimensions from 1 to 100 µm and attain features of reliable accuracy, low cost, wide jaw aperture and variable applied force. This paper studies the design process, simulation, and testing of a microgripper which can manipulate and assemble a platinum resistance temperature probe, made from a 25 µm diameter platinum wire, a 20 mm diameter tinned copper wire, and a printed circuit board type connector. Various microgripper structures and actuator types were researched and reviewed to determine the most suitable design for the required micromanipulation task. Operation tests using SolidWorks and ANSYS software were conducted to test a parallelogram structure with flexible single-notch hinges. The best suited material was found to be Aluminium alloy 7075-T6 as it was capable of producing a large jaw tip displacement of 0.7 mm without exceeding its tensile yield strength limit. A shape memory alloy was chosen as a choice of actuator to close the microgripper jaws. To ensure a repeatably accurate datum point, the final microgripper consisted of a fixed arm and a flexible arm. An optimisation process using ANSYS studied the hinge thickness and radius dimensions of the microgripper which improved its deflection whilst reducing the experienced stress.

  相似文献   

10.
The development of a SU-8-based microgripper that can operate in physiological ionic solutions is presented. The electrothermally activated polymer gripper consists of two “hot-and-cold-arm” actuators that are fabricated in a two-mask surface micromachining process. The high thermal expansion coefficient of SU-8 (52$ ppm/^circ C$) compared to silicon and metals, allows the actuation of the microgripper with small average temperature elevations (10 – 32$^circ C$) at low voltages (1–2 V). The polymer microgripper can be used for the manipulation of single cells and other biological species in solution with minimal undesired interactions.hfillhbox[1330]  相似文献   

11.
A novel electrothermal SU-8 microgripper with a large gripping scope and multipurpose jaws is designed and ANSYS software was used to check its performances. Then, the microgripper is fabricated by a simple UV-LIGA process followed by two performance tests. The static test results show that with only 195 mV, 111.1 mW and 53.7 °C temperature increase at the actuator, a 71.5 μm jaws gap change is obtained. The dynamic response test result shows that driven by different step-type voltages, the response time is about 0.23 s during both closing and opening jaws process. Finally, two micro-manipulation sequences are carried. The experimental results show that due to the large gripping scope and the multipurpose jaws, the microgripper can be used as a multipurpose manipulator for biological micro-manipulations including the manipulation of micro blood vessel and the operation of small size cell, such as cyanobacteria cell.  相似文献   

12.
A new hybrid-type micro-gripper that uses an integrated force sensor to control the gripping force was developed for handling micro-objects. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components: micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. A systematic design approach was applied to the design of each of components of the developed gripper, which made it possible to establish the functional requirements and design parameters of the micro-gripper. The micro-gripper was installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The gripping force signal was found to have a sensitivity of 667 N/V and several micro-objects were successfully moved (grasped and released) with the developed gripper. It was found during the testing experiments that the frictional forces between the working plane and the micro-object could be utilized to facilitate the release of micro-objects from the micro-gripper. We would like to thank Dr. W. K. Chung and Dr. S. S. Lee for their helpful discussions. We also express our appreciation to Mr. S. J. Kwon and S. C. Ko for their help in the experiments. This work is supported partly by the project Development of Core Technologies for Fabrication of Micro Tele-Manipulators from Ministry of Science and Technology, partly by the project Brain Korea 21 from Ministry of Education, and partly by Posco.  相似文献   

13.
设计了一种小型八角环二维力传感器,利用ANSYS仿真软件对传感器进行了有限元和应变节点分析,通过传感器静态标定实验得到了标定解耦矩阵,解决了由于加工误差和应变计粘贴误差带来的力矩耦合问题.设计了二指平行手爪,搭建了基于力外环控制的夹持器系统.运用手爪测量了不同材料之间的最大静摩擦系数.实际的抓取实验验证了基于力比例控制的稳定抓取具有良好效果.  相似文献   

14.
The micro-gripper is an essential device in micro-manipulation. A new micro-gripper fabrication process using MEMS technology is developed for a robotic micro-manipulation system. The mechanical stiffness of this gripper is analyzed with the Pseudo-Rigid Body Model to estimate the grip force of these micro-grippers of various scales and materials. The validity of the proposed model is verified by simulations and experiments. An experimental robotic micro-manipulation system consisting of this micro-gripper and a precision manipulator is implemented, and an actual gripping test is conducted to evaluate the robotic manipulation system.  相似文献   

15.
The field of robotics is evolving at a very high pace and with its increasing applicability in varied fields, the need to incorporate optimization analysis in robot system design is becoming more prominent. The present work deals with the optimization of the design of a 7-link gripper. As actuators play a crucial role in functioning of the gripper, the actuation system (piezoelectric (PZ), in this case) is also taken into consideration while performing the optimization study. A minimalistic model of PZ actuator, consisting different series and parallel assembly arrangements for both mechanical and electrical parts of the PZ actuators, is proposed. To include the effects of connector spring, the relationship of force with actuator displacement is replaced by the relation between force and the displacement of point of actuation at the physical system. The design optimization problem of the gripper is a non-linear, multi modal optimization problem, which was originally formulated by Osyczka (2002). In the original work, however, the actuator was a ‘constant output-force actuator model’ providing a constant output without describing the internal structure. Thus, the actuator model was not integrated in the optimization study. Four different cases of the PZ modelling have been solved using multi-objective evolutionary algorithm (MOEA). Relationship between force and actuator displacement is obtained using each set of non-dominated solutions. These relationships can provide a better insight to the end user to select the appropriate voltage and gripper design for specific application.  相似文献   

16.
《Ergonomics》2012,55(9):1144-1152
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18–25%) and muscle activity (by 15–30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.  相似文献   

17.
This paper reports an electrostatic microelectromechanical systems (MEMS) gripper with an integrated capacitive force sensor. The sensitivity is more than three orders of magnitude higher than other monolithically fabricated MEMS grippers with force feedback. This force sensing resolution provides feedback in the range of the forces that dominate the micromanipulation process. A MEMS ultrasonic device is described for aligning microobjects suspended in water using ultrasonic fields. The alignment of the particles is of a sufficient accuracy that the microgripper must only return to a fixed position in order to pick up particles less than 100 mum in diameter. The concept is also demonstrated with HeLa cells, thus providing a useful tool in biological research and cell assays  相似文献   

18.

The on-off control robot gripper is widely employed in pick-and-place operations in Cartesian space for handling hard objects between two positions. Without contact force monitoring, it can not be applied in fragile or soft objects handling. Although, an appropriate grasping force or gripper opening for each target could be searched by trial-and-error process, it needs expensive force/torque sensor or an accurate gripper position controller. It has too expensive and complex control strategy disadvantages for most of industrial applications. In addition, it can not overcome the target slip problem due to mass uncertainty and dynamic factor. Here, an intelligent gripper is designed with embedded distributed control structure for overcoming the uncertainty of object’s mass and soft/hard features. A communication signal is specified to integrate both robot arm and gripper control kernels for executing the robotic position control and gripper force control functions in sequence. An efficient model-free intelligent fuzzy sliding mode control strategy is employed to design the position and force controllers of gripper, respectively. Experimental results of pick-and-place soft and hard objects with grasping force auto-tuning and anti-slip control strategy are shown by pictures to verify the dynamic performance of this distributed control system. The position and force tracking errors are less than 1 mm and 0.1 N, respectively.

  相似文献   

19.
Easily manageable, electrothermally actuated silicon micro gripper   总被引:1,自引:0,他引:1  
This paper presents a new batch process to fabricate thermally driven silicon micro grippers for handling and manipulation objects smaller than 25 μm. To achieve a robust gripper gearing with fine gripping tips, silicon on insulator (SOI) technology is used. The flexure gearing is driven by two integrated thermal expansion actuators that are moving in opposite directions and are actuated by Joule heating. In addition, a customized gripper mounting mechanism is presented, which offers fast and easy gripper handling, resulting in reduced tooling time and lower costs for the user. Finally, the experimental results and electrical characteristics for the sophisticated gripper design are presented.  相似文献   

20.
Silicon-processed overhanging microgripper   总被引:7,自引:0,他引:7  
A silicon-processed microgripper, suitable for mounting on a micropositioner, has been designed and fabricated by combining surface and bulk micromachining. The microgripper consists of a silicon die (7 mm×5 mm), a 1.5 mm long support cantilever, made from boron-doped silicon substrate material (protruding from the die), and a 400 μm long polysilicon overhanging gripper extending from the end of the support cantilever. The microgripper is electrostatically driven by flexible, interdigitated comb pairs and has significantly smaller feature sizes than have been reported previously for overhanging microstructures. Problems addressed successfully in the microgripper fabrication include the protection of surface-micromachined fine structures during bulk-silicon etching and rinsing. The microgripper has successfully seized several microscopic objects in laboratory experiments  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号