共查询到20条相似文献,搜索用时 11 毫秒
1.
K Doi A Kawana A Iwamoto H Yoshikura T Odawara 《Canadian Metallurgical Quarterly》1997,142(9):1889-1894
Comparison of the whole p30 (CA) sequence between B-tropic WN1802B murine leukemia virus and its NB-tropic derivative revealed a single base change at the 313th nucleotide. We constructed hybrid proviruses differing only at the 313th nucleotide of p30 along the whole genome, and examined the host range of the produced viruses. The single point mutation in p30 was found sufficient for the B to NB tropism conversion. 相似文献
2.
Incorporation of human foamy virus (HFV) envelope proteins into murine leukemia virus (MuLV) particles was studied in a transient transfection packaging cell system. We report here that wild-type HFV envelope protein can pseudotype MuLV particles, albeit at low efficiency. Complete or partial removal of the HFV cytoplasmic tail resulted in an abolishment or reduction of HFV-mediated infectivity, implicating a role of the HFV envelope cytoplasmic tail in the pseudotyping of MuLV particles. Mutation of the endoplasmic reticulum retention signal present in the HFV envelope cytoplasmic tail did not result in a higher relative infectivity of pseudotyped retroviral vectors. However, a chimeric envelope protein, containing an unprocessed MuLV envelope cytoplasmic domain fused to a truncated HFV envelope protein, showed an enhanced HFV specific infectivity as a result of an increased incorporation of chimeric envelope proteins into MuLV particles. 相似文献
3.
Ecotropic murine leukemia viruses (MuLVs) are classified into B-N-, or NB-tropic MuLV by their host range determined by the Fv-1 gene product. B-tropic MuLV is restricted in N-type mouse cells (Fv-1 n/n) and N-tropic MuLV is restricted in B-type mouse cells (FV-1 b/b). Although forced passages in a restrictive host grant a wider host range (NB-tropism), we show here a host range conversion from B to N tropism. The conversion was most likely a result of recombination between the exogenously infected B-tropic MuLV and an endogenously expressed N-tropic MuLV in a C57BL/6 mouse cell line, YH-7. 相似文献
4.
The cytoplasmic domain of an envelope transmembrane glycoprotein (gp30) of bovine leukemia virus (BLV) has two overlapping copies of the (YXXL)2 motif. The N-terminal motif has been implicated in in vitro signal transduction pathways from the external to the intracellular compartment and is also involved in infection and maintenance of high viral loads in sheep that have been experimentally infected with BLV. To determine the role of YXXL sequences in the replication of BLV in vitro, we changed the tyrosine or leucine residues of the N-terminal motif in an infectious molecular clone of BLV, pBLV-IF, to alanine to produce mutated proviruses designated Y487A, L490A, Y498A, L501A, and Y487/498A. Transient transfection of African green monkey kidney COS-1 cells with proviral DNAs that encoded wild-type and mutant sequences revealed that all of the mutated proviral DNAs synthesized mature envelope proteins and released virus particles into the growth medium. However, serial passages of fetal lamb kidney (FLK) cells, which are sensitive to infection with BLV, after transient transfection revealed that mutation of a second tyrosine residue in the N-terminal motif completely prevented the propagation of the virus. Similarly, Y498A and Y487/498A mutant BLV that was produced by the stably transfected COS-1 cells exhibited significantly reduced levels of cell-free virion-mediated transmission. Analysis of the protein compositions of mutant viruses demonstrated that lower levels of envelope protein were incorporated by two of the mutant virions than by wild-type and other mutant virions. Furthermore, a mutation of a second tyrosine residue decreased the specific binding of BLV particles to FLK cells and the capacity for viral penetration. Our data indicate that the YXXL sequences play critical roles in both viral entry and the incorporation of viral envelope protein into the virion during the life cycle of BLV. 相似文献
5.
Previously, we showed that the amphotropic receptor homolog in hamster cells functions as a receptor not only for amphotropic murine leukemia viruses and 10A1 murine leukemia virus but also for gibbon ape leukemia virus (C.A. Wilson, K. B. Farrell, and M. V. Eiden, J. Virol. 68:7697-7703, 1994). Here, we demonstrate that this receptor functions as a sodium-dependent Pi transporter and that Na-Pi uptake can be specifically blocked following infection with either amphotropic murine leukemia virus, 10A1 murine leukemia virus, or gibbon ape leukemia virus. 相似文献
6.
7.
The infectivity of Friend ecotropic murine leukemia virus was previously shown to be highly sensitive to modification in its envelope protein (Env) at only one of the eight signals for N-linked glycan attachment, the fourth from the N terminus (gs4). In the present study, a set of six single-amino-acid substitutions in or near gs4 was used to determine the function of this region of Env and the role played by the glycan itself. One mutant that lacked the gs4 glycan was fully infectious, while one that retained this glycan was completely noninfectious, indicating that the gs4 glycan per se is not required for Env function. Infectivity correlated with the level of mature Env complex incorporated into virus particles, which was determined by the severity of defects in transport of the envelope precursor protein (gPrEnv) from the endoplasmic reticulum into the Golgi apparatus, in cleavage of gPrEnv into the two envelope subunits (the surface protein [SU] and the transmembrane protein [TM]), and in the association of SU with cellular membranes. All of the mutants induced the wild-type level of superinfection interference, indicating that the gs4 region mutations did not interfere with proper folding of the N-terminal domain of SU. These results suggest that the gs4 region mediates folding of the C-terminal domains of gPrEnv and stability of the interaction between SU and TM. Although the gs4 glycan was not essential for infectivity, processing of all mutant Envs lacking this glycan was significantly impaired, suggesting that efficient folding of gPrEnv requires a glycan at this position. The conservation of a glycosylation site homologous to gs4 across a broad range of retroviruses suggests that this sequence may play a similar role in many retroviral Envs. 相似文献
8.
M Oshima T Odawara K Hanaki H Igarashi H Yoshikura 《Canadian Metallurgical Quarterly》1998,72(8):6414-6420
The 441-nucleotide (nt) region (nt 5325 to 5766) around the splice acceptor (SA) site (nt 5491) was found to be necessary for high-level expression of gag-containing unspliced RNA of Moloney murine leukemia virus (M. Oshima, T. Odawara, T. Matano, H. Sakahira, K. Kuchino, A. Iwamoto, and H. Yoshikura, J. Virol. 70:2286-2295, 1996). Detailed genetic dissection of the 441-nt region revealed that the 5'-end 64 nt (nt 5325 to 5389) were necessary for high-level expression of the unspliced RNA when the spliced RNA was not produced, while the 3'-side 301 nt (nt 5466 to 5766) containing the SA site were necessary for producing spliced RNA. When the spliced RNA was produced, the unspliced RNA could be expressed at a high level even when the 5'-end 64 nt were absent. Probably the virus sequence ensuring the splicing could produce an RNA structure able to compensate for the function of the 5'-end 64-nt region responsible for the expression of the unspliced RNA. 相似文献
9.
10.
F Mammano F Salvatori S Indraccolo A De Rossi L Chieco-Bianchi HG G?ttlinger 《Canadian Metallurgical Quarterly》1997,71(4):3341-3345
Human immunodeficiency virus type 1 (HIV-1) can readily accept envelope (Env) glycoproteins from distantly related retroviruses. However, we previously showed that the HIV-1 Env glycoprotein complex is excluded even from particles formed by the Gag proteins of another lentivirus, visna virus, unless the matrix domain of the visna virus Gag polyprotein is replaced by that of HIV-1. We also showed that the integrity of the HIV-1 matrix domain is critical for the incorporation of wild-type HIV-1 Env protein but not for the incorporation of a truncated form which lacks the 144 C-terminal amino acids of the cytoplasmic domain of the transmembrane glycoprotein. We report here that the C-terminal truncation of the transmembrane glycoprotein also allows the efficient incorporation of HIV-1 Env proteins into viral particles formed by the Gag proteins of the widely divergent Moloney murine leukemia virus (Mo-MLV). Additionally, pseudotyping of a Mo-MLV-based vector with the truncated rather than the full-length HIV-1 Env allowed efficient transduction of human CD4+ cells. These results establish that Mo-MLV-based vectors can be used to target cells susceptible to infection by HIV-1. 相似文献
11.
MM Muller A Vianney JC Lazzaroni RE Webster R Portalier 《Canadian Metallurgical Quarterly》1993,175(18):6059-6061
TolR is a 142-amino-acid protein required for the import of colicins and bacteriophage and for maintenance of cell envelope integrity. The topology of TolR in the inner membrane was analyzed by two methods. First, bacteria expressing a series of TolR-beta-galactosidase, TolR-alkaline phosphatase, and TolR-beta-lactamase fusions were assayed for the appropriate enzymatic activity. Second, the accessibility of TolR to proteinase K was determined in permeabilized cells and everted vesicles with an antibody elicited against the carboxyl-terminal 70% of TolR. The results are consistent with TolR spanning the inner membrane once via residues 23 to 43 and with the carboxyl-terminal moiety being exposed to the periplasm. Quantitative studies with the anti-TolR antibody indicated the presence of 2 x 10(3) to 3 x 10(3) TolR molecules per cell. 相似文献
12.
13.
Incorporation of human immunodeficiency virus type 1 Gag proteins into murine leukemia virus virions
The retroviral Gag polyprotein is necessary and sufficient for assembly and budding of viral particles. However, the exact inter- and intramolecular interactions of the Gag polyproteins during this process are not known. To locate functional domains within Gag, we generated chimeric proviruses between human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MuLV). In these chimeric proviruses, the matrix or capsid proteins of MuLV were precisely replaced with the matrix or capsid proteins of HIV-1. Although the chimeric proviruses were unable to efficiently assemble into mature viral particles by themselves, coexpression of wild-type MuLV Gag rescued the HIV proteins into virions. The specificity of the rescue of HIV proteins into MuLV virions shows that specific interactions involving homologous matrix or capsid regions of Gag are necessary for retroviral particle formation. 相似文献
14.
We isolated the neurotropic Friend murine leukemia virus, FrC6 and its molecular clone A8, which proliferated in rat glial cell lines in vitro and in the rat brain in vivo. To investigate the contribution of viral envelope proteins to the neurotropism of A8 virus, the retroviral pseudo-virus carrying the envelope proteins of A8 virus and Moloney murine leukemia virus (MoMLV) was produced by transfecting the env gene of A8 virus (A8env) in the MoMLV based packaging cell, psi CRE. The phenotypically mixed pseudo-virus infected the rat glial cell lines as well as NIH 3T3 cells, whereas the psi CRE-produced pure pseudo-virus without A8env expression infected the glial cells at lower efficiency. Furthermore, the psi CRE cells with A8env expression produced pseudo-virus at a higher titer than normal psi CRE cells. The infectivity of the phenotypically mixed pseudo-virus to the glial cells was abolished by a neutralizing antibody against A8 virus, which did not reduce the ability of the psi CRE-produced pure pseudo-virus to infect NIH 3T3 cells. These results indicated that the envelope protein of A8 virus is assembled into the pseudo-viral particles and that it contributes to glial cell infection by the A8 virus. 相似文献
15.
C57BL/10 (B10) strains congenic at the mouse major histocompatibility locus (H-2) were injected with a modified ecotropic SL3-3 murine leukemia virus (MuLV) to determine the effect of the H-2 genes on the envelope gene structure of recombinant MuLVs. All tested strains rapidly developed T-cell lymphomas, and recombinant proviruses were detected in the tumor DNAs by Southern blot. The B10.D2 (H-2d), B10.Br (H-2k), B10.Q (H-2q), and B10.RIII (H-2r) strains exhibited a TI phenotype in which almost all tumors contained type I recombinants. These recombinants characteristically acquire envelope gene sequences from the endogenous polytropic viruses but retain the 5' p15E (TM) gene sequences from the ecotropic virus. The parental B10 (H-2b) strain, however, had a novel phenotype that was designated NS for nonselective. Only 30% of the B10 tumors had detectable type I recombinants, whereas a proportion of the others appeared to contain type II recombinants that lacked the type I-specific ecotropic p15E gene sequences. Studies of other B10 congenic strains with hybrid H-2 loci and selected F1 animals revealed that the NS phenotype was regulated by a dominant gene(s) that mapped to the A region of H-2b. These results demonstrate that a host gene within the major histocompatibility complex can influence the genetic evolution of pathogenic retroviruses in vivo. 相似文献
16.
We previously demonstrated by site-directed mutagenesis analysis that the amino acid residues at positions 62 and 214 to 216 in the N-terminal region of mouse hepatitis virus (MHV) spike (S) protein are important for receptor-binding activity (H. Suzuki and F. Taguchi, J. Virol. 70:2632-2636, 1996). To further identify the residues responsible for the activity, we isolated the mutant viruses that were not neutralized with the soluble form of MHV receptor proteins, since such mutants were expected to have mutations in amino acids responsible for receptor-binding activity. Five soluble-receptor-resistant (srr) mutants isolated had mutations in a single amino acid at three different positions: one was at position 65 (Leu to His) (srr11) in the S1 subunit and three were at position 1114 (Leu to Phe) (srr3, srr4, and srr7) and one was at position 1163 (Cys to Phe) (srr18) in the S2 subunit. The receptor-binding activity examined by a virus overlay protein blot assay and by a coimmunoprecipitation assay showed that srr11 S protein had extremely reduced binding activity, while the srr7 and srr18 proteins had binding activity similar to that of wild-type cl-2 protein. However, when cell surface receptors were used for the binding assay, all srr mutants showed activity similar to that of the wild type or only slightly reduced activity. These results, together with our previous observations, suggest that amino acids located at positions 62 to 65 of S1, a region conserved among the MHV strains examined, are important for receptor-binding activity. We also discuss the mechanism by which srr mutants with a mutation in S2 showed high resistance to neutralization by a soluble receptor, despite their sufficient level of binding to soluble receptors. 相似文献
17.
Proteolytic processing is required for the activation of numerous viral glycoproteins. Here we show that the envelope glycoprotein from the Zaire strain of Ebola virus (Ebo-GP) is proteolytically processed into two subunits, GP1 and GP2, that are likely covalently associated through a disulfide linkage. Murine leukemia virions pseudotyped with Ebo-GP contain almost exclusively processed glycoprotein, indicating that this is the mature form of Ebo-GP. Mutational analysis identified a dibasic motif, reminiscent of furin-like protease processing sites, as the Ebo-GP cleavage site. However, analysis of Ebo-GP processing in LoVo cells that lack the proprotein convertase furin demonstrated that furin is not required for processing of Ebo-GP. In sharp contrast to other viral systems, we found that an uncleaved mutant of Ebo-GP was able to mediate infection of various cell lines as efficiently as the wild-type, proteolytically cleaved glycoprotein, indicating that cleavage is not required for the activation of Ebo-GP despite the conservation of a dibasic cleavage site in all filoviral envelope glycoproteins. 相似文献
18.
The pre-S envelope protein of duck hepatitis B virus (DHBV) contains a region, Asp-Asp-Pro-Leu-Leu (DDPLL), that is specifically required for virus assembly and secretion (Lenhoff and Summers, J Virol 1994;68:4565-4571). We found that amino acids 201 to 205 of the pre-S envelope protein of woodchuck hepatitis virus (WHV) form a conserved amino acid cluster, Gly-Asp-Pro-Ala-Leu (GDPAL), which resembles the DDPLL sequence of DHBV. To determine whether the GDPAL region was functionally equivalent to the DDPLL region, we deleted this region from the pre-S protein of WHV or mutated individual amino acids within the region. The mutant DNA was transfected into human hepatoma cell line Huh7, and the medium was assayed for virion production by immunoprecipitation and Southern blot analysis. We found that an in-frame deletion of this small region inhibited virion formation, suggesting that the GDPAL region of the pre-S envelope protein was required for virus assembly and/or secretion of WHV. Individual replacement of alanine 204, leucine 205, or serine 206 with other amino acid residues did not affect virus production. However, substitution of either aspartic acid 202 with valine or proline 203 with leucine dramatically inhibited WHV production. Furthermore, the GDPAL mutants were individually tested for their abilities to complement a pre-S1 defective genome. The results showed that the GDPAL region functioned as part of the pre-S1 protein but was not required to function as part of the pre-S2 protein. 相似文献
19.
BS Schnierle J Stitz V Bosch F Nocken H Merget-Millitzer M Engelst?dter R Kurth B Groner K Cichutek 《Canadian Metallurgical Quarterly》1997,94(16):8640-8645
CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4(+) T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4(+) cells during gene therapy of AIDS. 相似文献
20.
Murine ecotropic leukemia viruses use a common receptor for entry into host cells; however, the site of virus fusion appears to differ with the host cell. Entry in mouse NIH 3T3 fibroblasts is by endocytosis, whereas entry in rat XC sarcoma cells is by surface fusion. We report here the identification of a step common to both entry pathways, as well as of a step unique to the endocytic pathway. Recent demonstration of the clustering of the virus receptor on rat cells suggested a possible interaction of the receptor with the cellular cytoskeleton (M. H. Woodard, W. A. Dunn, R. O. Laine, M. Malandro, R. McMahon, O. Simell, E. R. Block, and M. S. Kilberg, Am. J. Physiol. 266:E817-E824, 1994). We tested the hypothesis that such an interaction might influence receptor function. We found that entry into NIH 3T3 and XC cells was greatly diminished by the disruption of the actin network before but not shortly after virus internalization, suggesting the actin network plays a critical role in an early step common to both entry pathways. Disruption of microtubules before and shortly after virus internalization markedly reduced entry in NIH 3T3 cells, while entry into XC cells remained efficient. These data suggest that intact microtubules are required in a postpenetration step unique to efficient virus entry via endocytosis. The physiological function of the receptor was not affected by disruption of either the actin network or the microtubules, as the uptake of cationic amino acids in NIH 3T3 and XC cells was comparable to that in control cells even when the cytoskeleton remained disrupted for as long as 3 h. 相似文献