首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
改性β沸石负载碳化钼催化剂上正己烷的异构化   总被引:1,自引:2,他引:1  
通过碱溶液适度处理β沸石来增大其孔径,以(NH4)6Mo7O24·4H2O为钼源,以正己烷为碳源,制备了改性β沸石负载碳化钼催化剂。XRD,BET,FTIR分析结果表明,制备的改性β沸石具有高比表面积和大孔径,利用正己烷作为碳源得到了对异构化具有活性的β-Mo2C催化剂。以正己烷为模型反应物,考察了反应温度、压力、空速和氢烃比对β-Mo2C/β沸石催化剂临氢异构化反应性能的影响。结果表明,β沸石负载碳化钼催化剂上的正己烷异构化的最优反应条件为:反应温度265 ℃, 反应压力1.5 MPa,体积空速1.0 h-1,氢烃体积比200。在该条件下,当正己烷转化率为80.97%时,异构化选择性和异构产物收率分别为72.53%和58.73%。  相似文献   

2.
Mo2C/SAPO-11催化剂上正己烷异构化反应研究   总被引:1,自引:1,他引:0  
利用程序升温还原法制备了SAPO-11负载碳化钼催化剂。XRD分析表明,利用正己烷作为碳源得到了对异构化具有活性的β-Mo2C。通过连续流动固定床反应装置,以正己烷为模型反应物,考察了反应温度、压力、空速和氢烃体积比对β-Mo2C/SAPO-11催化剂临氢异构化反应性能的影响。结果显示,SAPO-11负载碳化钼催化剂上的正己烷异构化的最适宜反应条件为温度380℃, 压力1.5MPa,体积空速1.0h-1,氢烃体积比200:1。在适宜条件下反应物转化率为82.19%,异构物选择性和收率分别达到73.57%和60.47%。  相似文献   

3.
Mo2C/SAPO-11催化剂上正己烷的异构化   总被引:1,自引:0,他引:1  
本实验利用程序升温还原法制备了SAPO-11负载碳化钼催化剂.XRD分析表明,利用正己烷作为碳源得到了对异构化具有活性的β-Mo2C.通过连续流动固定反应装置,以正己烷为模型反应物,考察了反应温度、压力、空速和氢烃比对β-Mo2C/SAPO-11催化剂临氢异构化反应性能的影响.结果显示,SAPO-11负载碳化钼催化剂上的正己烷异构化的最适宜反应条件为温度380℃, 压力1.5 MPa,体积空速1.0 h-1,氢烃体积比200∶ 1.最适宜条件下反应物转化率为82.19%时,选择性和异构物收率分别达到73.57%和60.47%.  相似文献   

4.
采用浸渍法和程序升温法,以正己烷为碳源,制备了β-Mo2C(20%,质量分数)/SAPO-11催化剂。XRD,BET,FTIR分析结果显示,β-Mo2C结晶良好,具有合适的孔体积和孔径。以正十二烷为原料,在连续流动的固定床反应装置上,通过改变温度、压力、体积空速以及氢烃体积比等参数,考察该催化剂的异构化反应性能。结果表明,β-Mo2C(20%)/SAPO-11上的正十二烷异构化优化反应条件为:反应温度400℃,反应压力3.0MPa,体积空速1.0h-1,氢烃体积比400。在此条件下的正十二烷转化率达到80.2%,异构化选择性和异构体收率分别为70%和57%左右。  相似文献   

5.
正己烷在β沸石负载碳化钼催化剂上的异构化研究   总被引:5,自引:3,他引:2  
利用程序升温还原法制备了β沸石负载碳化钼催化剂。XRD分析结果表明,利用正己烷作为碳源得到了对异构化具有活性的β-Mo2C。通过连续流动固定反应装置,以正己烷为模型反应物,考察了反应温度、压力、空速和氢烃比对β-Mo2C/β沸石催化剂临氢异构化反应性能的影响。结果表明,在反应温度270~275 ℃、 压力1.0~1.5 MPa、体积空速1.0~1.5 h-1、氢烃体积比200:1的条件下,当正己烷转化率为80%时,选择性和异构体收率分别达到71%和57%。  相似文献   

6.
本实验通过碱溶液适度处理β沸石来增大其孔径,制备了β沸石负载碳化钼催化剂.XRD、BET、FTIR分析表明,制备出了高比表面积大孔径的β沸石.XRD分析表明,利用正已烷作为碳源得到了对异构化具有活性的β-Mo2C.以正己烷为模型反应物,考察了反应温度、压力、空速和氢烃比对β-Mo2C/β沸石催化剂临氢异构化反应性能的影响.结果显示,β沸石负载碳化钼催化剂上的正己烷异构化的最优反应条件为温度265℃,压力1.5 MPa,体积空速1.0 h1,氢烃体积比200:1.最优条件下当反应物转化率为80.97%时,选择性和异构物收率分别达到72.53%和58.73%.  相似文献   

7.
采用共沉淀法制备SO42-/ZrO2-Al2O3,等体积浸渍法制备Pt-SO42-/ZrO2-Al2O3固体超强酸催化剂,采用5mL连续固定床反应装置评价了反应温度、反应压力、氢/油体积比和体积空速对Pt-SO42-/ZrO2-Al2O3催化剂催化正己烷临氢异构化反应活性的影响。进行拟一级动力学模型验证,建立正己烷异构化一级反应网络动力学模型。结果表明:增加反应压力和体积空速,正己烷转化率降低;随着氢/油体积比、反应温度的升高,正己烷转化率提高。在180~200℃范围内,正己烷在Pt-SO42-/ZrO2-Al2O3催化剂上的临氢异构化反应可以视为简单拟...  相似文献   

8.
在连续流动固定床装置上,探讨了非贵金属Ni/HZSM-5催化剂对裂解汽油选择加氢裂化反应的特征,考察了镍含量、温度、压力、空速及氢烃体积比等参数的影响。随镍含量的增加,裂解汽油中C6+非芳烃转化率先增加后减小,镍含量为2.1%左右较为适宜。工艺条件中温度和压力的影响较大,空速次之,氢烃体积比最小。在380 ℃、3.0 MPa、质量空速1.245 h-1、氢烃体积比1 000的条件下,以镍含量为2.1%的Ni/HZSM-5为催化剂,65 h内裂解汽油中C6+非芳烃组分转化率保持在95%以上,而芳烃转化率仅有13%; 加氢裂化产物中,C2+正构烷烃达80.96%,其中丙烷60.71%,而甲烷和异构烷烃较少。这表明非贵金属Ni/HZSM-5催化剂可高选择性地裂化C6+非芳烃,适用于裂解汽油加氢裂化制备芳烃联产低碳烷烃。  相似文献   

9.
采用次磷酸镍过量浸渍-分解法制备了Ni2P/SAPO-11催化剂,通过低温N2吸附-脱附、XRD、HRTEM等分析手段对催化剂进行了表征。以正庚烷为原料,在固定床微反装置上考察了反应条件、Ni2P负载量对正庚烷异构化反应性能的影响,并与Pt/SAPO-11催化剂进行了对比。结果表明:Ni2P/SAPO-11催化剂具有与Pt基催化剂相当的异构化选择性,但异构化活性和芳构化选择性较低;Ni最佳负载量(w)为4%,优化的反应条件为:反应温度400 ℃、压力0.5 MPa、氢烃体积比500、体积空速1 h-1,在此条件下正庚烷的转化率为73.0%,异构化选择性为90%。  相似文献   

10.
采用共浸渍法制备了不同Ce含量改性的Ce-Pt/Hβ-HZSM-5异构化催化剂。通过BET,XRD,NH_3-TPD,Py-IR,TEM等手段对催化剂试样进行了表征,在固定床微反装置上考察了催化剂对正己烷的异构化反应活性。实验结果表明,稀土助剂Ce的引入导致催化剂的比表面积和孔体积降低,B酸量和总酸量增加,活性Pt物种的分散性得到改善,优化了催化剂的正己烷异构化性能。在反应压力1.5 MPa、体积空速1 h~(-1)、氢油体积比500、反应温度280℃的条件下,Ce含量1%(w)、Pt含量0.4%(w)的Ce-Pt/Hβ-HZSM-5催化剂活性最高,正己烷转化率为81.90%,异构化率为81.78%。  相似文献   

11.
 以二氧化钛(TiO2)晶须成型材料为载体,采用过量浸渍法制备了MoO3负载量为7.2%(质量分数)的新型Mo/TiO2加氢脱硫催化剂。利用XRD、BET等手段对该催化剂进行表征,并且在催化剂中压微反活性评价装置上考察了不同操作条件对其噻吩加氢脱硫性能的影响。结果表明,新型Mo/TiO2为纯锐钛矿相;TiO2晶须成型载体负载了7.2%MoO3后,比表面积由93m2/g 变为72m2/g,孔容由0.27cm3/g变为0.23cm3/g,下降均不明显。该Mo/TiO2催化剂直接用于噻吩加氢脱硫反应时,5h内即达较高活性,能把模型溶液中的噻吩质量分数由1300μg/g降至5μg/g以下。在反应温度300~330 ℃、H2分压1.5~3.0 MPa、氢/油体积比155~250、体积空速3.0~5.0 h-1的条件下,新型Mo/TiO2催化剂上噻吩加氢脱硫转化率接近100 %,运行500h没有明显失活迹象。  相似文献   

12.
 采用TG-DTA技术研究了MoO3在CH4/H2气氛中的还原碳化行为,考察了NiO助剂对MoO3还原碳化性能的影响,探索了适宜的还原碳化条件。结果表明,MoO3在H2气氛中程序升温还原经MoO3 → MoO2 →Mo反应历程被还原为金属Mo,在CH4/H2气氛中则经MoO3→MoO2→MoOxCy →Mo2C反应历程被还原碳化成Mo2C;NiO可在H2气氛中被还原成金属Ni,但在CH4/H2气氛中不能被碳化成相应的碳化物,也被还原为金属Ni;NiO作为助剂添加到MoO3中后,NiO-MoO3在CH4/H2气氛中的还原碳化反应历程为NiO-MoO3→Ni-MoOxCy→ Ni-Mo2C,相应的还原碳化温度降低。随Ni/Mo原子比的增大,制备的NiO-MoO3在CH4 /H2气氛中还原碳化的温度降幅增大。MoO3 和NiO-MoO3的适宜还原碳化温度分别为675℃和639℃。  相似文献   

13.
CoMo/SBA-15-γ-Al2O3催化剂的加氢脱硫活性研究   总被引:1,自引:1,他引:0  
采用介孔分子筛SBA-15和γ-Al2O3制备混合载体SBA-15-γ-Al2O3,担载Co-Mo金属活性组分制备深度加氢脱硫催化剂CoMo/SBA-15-γ-Al2O3。BET表征结果表明,混合载体负载金属后仍然具有介孔材料的特性,表面积略有下降。以直馏柴油为原料,在固定床微型反应器上评价了该催化剂的加氢脱硫反应活性。结果表明,在催化剂CoO和MoO3的质量分数分别为5%和20%、反应温度360 ℃、反应压力6 MPa、氢油体积比600、体积空速2 h-1的条件下,柴油硫含量可由829 μg/g降至6 μg/g。  相似文献   

14.
 制备不同配比的TiO2-ZrO2-SiO2三元复合载体并对其加氢脱芳性能进行了比较。XRD表征结果表明,采用溶胶-凝胶法制得的不同摩尔配比的三元复合载体均具有一定的晶型结构、较大的比表面积孔径和孔体积。在反应温度320 ℃、压力3 MPa、体积空速2 h-1、氢油体积比为500的条件下,n(Ti):n(Zr):n(Si)为3:1:4的复合载体催化剂的加氢脱芳效果最佳,脱芳率为82.51%。  相似文献   

15.
以碱液处理过的β沸石为载体,四水合钼酸铵((NH4)6Mo7O24.4H2O)为钼源,采用程序升温法,以正己烷为碳源制备了β-Mo2C/改性β沸石催化剂。对样品使用XRD、BET、FTIR、TEM等分析表征手段,结果表明,改性后的β沸石具有较高比表面积和较大孔径。以正己烷为模型反应物,在连续进料式固定床微型反应器上考察了催化剂的异构化性能。催化结果显示,经过碱液处理的β沸石催化剂的异构化转化率、异构选择性和异构得率均高于未经处理的β沸石催化剂。β-Mo2C/改性β沸石催化剂的寿命要比β-Mo2C/β沸石催化剂的寿命提高了近1倍以上,且最适宜反应温度降低了10℃。  相似文献   

16.
以尿素燃烧法制备了Co-Mo/Al2O3-TiO2催化剂,采用低温N2吸附、HRTEM、XPS等方法对催化剂的表面结构和电子状态进行了表征,在微型固定床反应器上对Co-Mo/Al2O3-TiO2催化剂的活性进行了评价。考察了尿素添加量、TiO2添加量、n(Co)∶n(Mo)、反应温度和液态空速(LHSV)等对催化剂结构和加氢脱硫活性的影响。实验结果表明,采用n(尿素)∶n(Co+Mo)=10.0时制备的Co-Mo/Al2O3-TiO2催化剂表面负载的金属组分密度大,孔径大,对二苯并噻吩的脱除率达94%以上;添加TiO2降低了Mo与载体的相互作用;在Al2O3-TiO2载体中TiO2的质量分数为20%,n(Co)∶n(Mo)=0.35~0.55、反应温度300~380℃、LHSV=3~6h-1的条件下,Co-Mo/Al2O3-TiO2催化剂的加氢脱硫活性最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号