首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we propose a fractional‐order proportional‐integral‐derivative controller design based on the solution of an model matching problem for fractional first‐order‐plus‐dead‐time processes. Starting from the analytical solution of the problem, we show that a fractional proportional‐integral‐derivative suboptimal controller can be obtained. Guidelines for the tuning of the controller parameters are given in order to address the robust stability issue and to obtain the required performance. The main differences with respect to the integer‐order case are highlighted. Simulation results show that the design methodology is effective and allows the user to consider process with different dynamics in a unified framework. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a new algorithm for computation of controllability and observability Gramians for an expanded state space form of integer‐order approximator to linear time‐invariant discrete‐time noncommensurate fractional‐order systems. The introduced methodology can significantly reduce the time complexity of the Gramians' calculation, being the main computational burden in modeling of discrete‐time fractional‐order systems by means of a high integer‐order expanded state space approximator and the balanced truncation reduction method. Simulation experiments illustrate an efficiency of the introduced methodology, in particular for low‐dimension fractional‐order systems and high implementation lengths.  相似文献   

3.
In this paper, the consensus problem of fractional‐order multi‐agent systems with a reference state is studied under fixed directed communication graph. At the beginning, the convergence speeds of fractional‐order multi‐agent systems are investigated based on the Mittag‐Leffler function. Then, a common consensus control law and a consensus control law based on error predictor are proposed, and it is shown that the consensus tracking can be achieved using the above control laws when a communication graph has a directed spanning tree. Finally, the convergence speeds of fractional‐order systems are compared, and it is discovered that the convergence of systems is faster using the control law based on error predictor than using the common one.  相似文献   

4.
目前工程控制中大部分系统采用传统PID控制,由于分数阶PID继承了传统PID的优点,并且具有更好的控制品质及更强的鲁棒性,因此针对分数阶微积分的高精度数字实现及分数阶PID控制器在工程复杂系统中的实际应用,提出一种新的分数阶微积分高精度数字实现算法-最优Oustaloup数字实现,并建立控制系统的仿真模型,利用框图式模型结合最优ITAE性能指标来整定分数阶PID的参数。通过实例仿真验证,该方法能进一步优化控制器参数,提高控制精度及获得更好的控制效果,便于非线性系统及复杂系统的分数阶PID参数整定。  相似文献   

5.
In this paper, a new approach, called coprime‐factorized predictive functional control method (CFPFC‐F) is proposed to control unstable fractional order linear time invariant systems. To design the controller, first, a prediction model should be synthesized. For this purpose, coprime‐factorized representation is extended for unstable fractional order systems via a reduced approximated model of unstable fractional order (FO) system. That is, an approximated integer model of fractional order system is derived via the well‐known Oustaloup method. Then, the high order approximated model is reduced to a lower one via a balanced truncation model order reduction method. Next, the equivalent coprime‐factorized model of the unstable fractional‐order plant is employed to predict the output of the system. Then, a predictive functional controller (PFC) is designed to control the unstable plant. Finally, the robust stability of the closed‐loop system is analyzed via small gain theorem. The performance of the proposed control is investigated via simulations for the control of an unstable non‐laminated electromagnetic suspension system as our simulation test system.  相似文献   

6.
The observer design problem for integer‐order systems has been the subject of several studies. However, much less interest has been given to the more general fractional‐order systems, where the fractional‐order derivative is between 0 and 1. In this paper, a particular form of observers for integer‐order Lipschitz, one‐sided Lipschitz and quasi‐one‐sided Lipschitz systems, is extended to the fractional‐order calculus. Then, the obtained states estimates are used for an eventual feedback control, and the separation principle is tackled. The effectiveness of the proposed scheme is shown through simulation for two numerical examples.  相似文献   

7.
This paper focuses on the graphical tuning method of fractional order proportional integral derivative (FOPID) controllers for fractional order uncertain system achieving robust ‐stability. Firstly, general result is presented to check the robust ‐stability of the linear fractional order interval polynomial. Then some alternative algorithms and results are proposed to reduce the computational effort of the general result. Secondly, a general graphical tuning method together with some computational efficient algorithms are proposed to determine the complete set of FOPID controllers that provides ‐stability for interval fractional order plant. These methods will combine the results for fractional order parametric robust control with the method of FOPID ‐stabilization for a fixed plant. At last, two important extensions will be given to the proposed graphical tuning methods: determine the ‐stabilizing region for fractional order systems with two kinds of more general and complex uncertainty structures: multi‐linear interval uncertainty and mixed‐type uncertainties. Numerical examples are followed to illustrate the effectiveness of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes a variable structure control for fractional‐order systems with delay in both the input and state variables. The proposed method includes a fractional‐order state predictor to eliminate the input delay. The resulting state‐delay system is controlled through a sliding mode approach where the controller uses a sliding surface defined by fractional order integral. Then, the proposed control law ensures that the state trajectories reach the sliding surface in finite time. Based on recent results of Lyapunov stability theory for fractional‐order systems, the stability of the closed loop is studied. Finally, an illustrative example is given to show the interest of the proposed approach.  相似文献   

9.
The paper extends a recent work on a modified PI-PD Smith predictor, which leads to significant improvements in the control of processes with large time constants or an integrator or unstable plant transfer functions plus long dead-time for reference inputs and disturbance rejections. Processes with high orders or long time delays are modelled with lower order plant transfer functions with longer time delays. The PI-PD controller is designed so that the delay free part of the system output will follow the response of a first order plant or second order plant, where it is appropriate, assuming a perfect matching between the actual plant and model in both the dynamics and time delay. The provided simple tuning formulae have physically meaningful parameters. Plant model transfer functions and controller settings are identified based on exact analysis from a single relay feedback test using the peak amplitude and frequency of the process output. Examples are given to illustrate the simplicity and superiority of the proposed method compared with some existing ones.  相似文献   

10.
Ying Luo  YangQuan Chen 《Automatica》2009,45(10):2446-2167
Recently, fractional order systems (FOS) have attracted more and more attention in various fields. But the control design techniques available for the FOS suffer from the lack of direct systematic approaches. In this paper, we focus on a given type of simple model of FOS. A fractional order [proportional derivative] (FO-[PD]) controller is proposed for this class of FOS, and a practical and systematic tuning procedure has been developed for the proposed FO-[PD] controller synthesis. The fairness issue in comparing with other controllers such as the traditional integer order PID (IO-PID) controller and the fractional order proportional derivative (FO-PD) controller has been addressed under the same number of design parameters and the same specifications. Fair comparisons of the three controllers (i.e., IO-PID, FO-PD and FO-[PD]) via the simulation tests illustrate that, the IO-PID controller designed may not always be stabilizing to achieve flat-phase specification while both FO-PD and FO-[PD] controllers designed are always stabilizing. Furthermore, the proposed FO-[PD] controller outperforms FO-PD controller for the class of fractional order systems.  相似文献   

11.
In this study, an online tuning strategy for the fractional derivative order term of the variable-order fractional proportional–integral–derivative (PID) controller is proposed for processes with dead time. The classical step response is divided into regions, and meta-rules are developed for each region in order to improve the control performance. To achieve the goals of the meta-rules, a set of equations that are the functions of absolute error and model parameters are proposed to manipulate the fractional order derivative during the process. These equations can handle the changes in model parameters since the coefficients of these equations are functions of model parameters. On both simulation studies and experimental results on the active suspension system, we show that the proposed method improves the time domain performance criteria both in relation to reference tracking and load disturbance rejection. Moreover, the robustness of the proposed method has also been tested and analyzed for the dead time variation within the process.  相似文献   

12.
By using the Grünwald‐Letnikov (G‐L) difference method and the Tustin generating function method, this study presents extended Kalman filters to achieve satisfactory state estimation for fractional‐order nonlinear continuous‐time systems that containing some unknown parameters with the correlated fractional‐order colored noises. Based on the G‐L difference method and the Tustin generating function method, the difference equations corresponding to fractional‐order nonlinear continuous‐time systems are constructed respectively. The first‐order Taylor expansion is used to linearize the nonlinear functions in the estimated system, which provides the system model for extended Kalman filters. Using the augmented vector method, the unknown parameters are regarded as new state vectors, and the augmented difference equation is constructed. Based on the augmented difference equation, extended Kalman filters are designed to estimate the state of fractional‐order nonlinear systems with process noise as fractional‐order colored noise or measurement noise as fractional‐order colored noise. Meanwhile, the extended Kalman filters proposed in this paper can also estimate the unknown parameters effectively. Finally, the effectiveness of the proposed extended Kalman filters is validated in simulation with two examples.  相似文献   

13.
A simple approach with a small number of tuning parameters is a key goal in fractional order controller design. Recently there have been a number of limited attempts to bring about improvements in these areas. In this paper, a new design method for a fractional order PID controller based on internal model control (IMC) is proposed to handle non-integer order systems with time delay. In order to reduce the number of tuning parameters and mitigate the impact of time delay, the fractional order internal model control scheme is used. Considering the robustness of the control system with respect to process variations and model uncertainty, maximum sensitivity is applied to the tuning of the parameters. The resulting controller has the structure of a fractional order PID which is cascaded with a filter. This is named a fractional IMC–PID controller. Numerical results are given to show the efficiency of the proposed controller.  相似文献   

14.
为改善分数阶PID控制器的控制性能,借鉴整数阶模糊免疫PID控制器,把模糊免疫调节与分数阶PID控制器结合起来,设计了分数阶模糊免疫PID控制器。仿真结果表明了该方法的有效性,不但提高了分数阶PID控制器跟踪性能,而且还具有良好的鲁棒性和抗干扰性。  相似文献   

15.
Fractional order controller design with a small number of tuning parameters is very attractive. Few attempts have been done recently for some limited cases of models. In this paper, a new approach is developed to design simple fractional-order controllers to handle fractional order processes. The fractional property is not especially imposed by the controller structure but by the closed-loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: a PIυDμ-controller and a simple fractional filter. The new structure is named PIυDμ-FOF-controller. The design method is based on the internal model control (IMC) paradigm.  相似文献   

16.
The extended state observer (ESO) based controller has been used successfully with integer‐order systems involving large uncertainties. In this paper, the robust control of uncertain multi‐order fractional‐order (FO) systems based on ESO is investigated. First, we transform the multi‐order FO system into an equivalent system in the form of a same‐order state‐space equation. Then, the ESO for the new system is established for estimating both the state and the total disturbance. Sufficient conditions for bounded‐input and bounded‐output stability are derived, and the asymptotic stability of the closed loop system is analyzed, based on whether the states are available or not. Finally, numerical simulations are presented to demonstrate the validity and feasibility of the proposed methodology.  相似文献   

17.

基于退化分析方法提出一种判定准则, 用于分析不确定分数阶时滞系统的稳定性. 介绍一种分数阶积分算子的有理逼近方法, 在此基础上采用整数阶系统逼近分数阶系统, 从而将难以判定的分数阶系统稳定性问题转化为由逼近偏差作为不确定项的整数阶系统稳定性问题进行处理. 利用积分不等式法研究逼近系统稳定性, 得到LMI 形式的稳定性判据. 仿真结果表明, 所提出方法能够有效分析这类系统的稳定性.

  相似文献   

18.
This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.  相似文献   

19.
The aim of this paper is to employ fractional order proportional integral derivative (FO-PID) controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system (MLS), which is inherently nonlinear and unstable system. The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller. An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored. The controller parameters are tuned using dynamic particle swarm optimization (dPSO) technique. Effectiveness of the proposed control scheme is verified by simulation and experimental results. The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers. It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.   相似文献   

20.
针对直线一级倒立摆的稳定控制问题,设计了分数阶比例积分(FOPI和FO[PI])控制器。首先,根据Newton力学方法建立了倒立摆系统的数学模型。然后,采用基于向量的增益鲁棒性分数阶控制器参数求解简化算法,设计了分数阶比例积分控制器。最后,在MATLAB环境下进行了分数阶比例积分控制器参数整定方法的有效性验证,并且对倒立摆系统分别采用分数阶比例积分控制器和整数阶PID(IOPID)控制器进行了稳定控制仿真实验,并将得到的摆杆角度响应曲线进行了对比分析。结果表明:分数阶比例积分控制器对系统的稳定控制效果优于IOPID控制器,且在分数阶比例积分控制器中,FO[PI]控制器对系统稳定控制最好,响应时间较快、振荡幅值较小且具有鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号