首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
目的提高304不锈钢减摩耐磨性能。方法使用LDM-8060型半导体激光加工系统,制备出三种不同配比的Ti_3SiC_2-Ni基自润滑耐磨复合涂层。使用X射线衍射仪(XRD)、扫描电镜(SEM)及其自带的能谱仪(EDS)对304不锈钢与Ti_3SiC_2-Ni基涂层进行表征,并系统地分析其在室温和600℃下的摩擦学性能和磨损机理。结果复合涂层主要由Cr0.19Fe0.7Ni0.11固溶体,硬质相Fe_2C、Cr_7C_3和Ti C,润滑相Ti_3SiC_2组成。其平均显微硬度分别为451.14、419.33、359.92HV0.5,明显高于304不锈钢基体的平均显微硬度(238.91HV0.5)。室温下,Ti_3SiC_2-Ni基复合涂层摩擦系数的平均值分别为0.41,0.46和0.48,磨损率分别为6.37×10~(-5)、16.52×10~(-5)、4.16×10~(-5) mm~3/(N·m),均低于304不锈钢(0.56、46.35×10~(-5) mm~3/(N·m))。在600℃下,Ti_3SiC_2-Ni基复合涂层的平均摩擦系数分别为0.38,0.43和0.41,磨损率分别为12.51×10~(-5)、7.58×10~(-5)、7.79×10~(-5)mm~3/(N·m),也均低于304不锈钢(0.66,24.25×10~(-5)mm~3/(N·m))。结论在室温和600℃下,Ti_3SiC_2-Ni基复合涂层能有效地提高304不锈钢的显微硬度,进而提升其摩擦学性能。其中添加10%Ti_3SiC_2的Ti_3SiC_2-Ni基复合涂层在600℃下表现出最好的耐磨性,而添加5%Ti_3SiC_2的Ti_3SiC_2-Ni基复合涂层在室温和600℃下表现出最好的减摩性能。  相似文献   

2.
研究TC4合金在氯化钠溶液中的微动磨损行为,分析不同摩擦副材料下载荷与磨损形貌、摩擦系数和磨损量的关系。结果表明,微动磨损机制是粘着磨损-疲劳脱层-磨粒磨损和腐蚀磨损;腐蚀介质下摩擦系数曲线比干空气的低且平稳;Al_2O_3/TC4摩擦系数曲线波动较大,载荷较大时由微动转为往复滑动。Si_3N_4/TC4磨损量和磨损率均比GCr15/TC4的大,GCr15/TC4耐磨性优于Si_3N_4/TC4,GCr15球作摩擦副材料时磨损性能最好。TC4在氯化钠溶液中的失重是由机械磨损、腐蚀和磨损的交互作用造成的。  相似文献   

3.
目的提高TA2钛合金的耐磨减摩性能,并研究添加WS_2对激光熔覆Ti/TiC耐磨复合涂层的影响。方法以Ti+TiC和Ti+TiC+WS_2两种复合粉末为预置原料,采用激光熔覆技术在TA2合金表面制备出两类复合涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、硬度计和摩擦磨损试验机,系统地分析了添加WS_2前后涂层的物相、组织、显微硬度及摩擦学性能。结果 Ti+TiC复合粉末的激光熔覆涂层的主要物相包含α-Ti和TiC,涂层的显微硬度为1162HV0.5。WS_2添加后,涂层中生成了新增强相(Ti,W)C_(1-x)及自润滑相Ti2SC和少量的TiS,涂层的显微硬度为1052.3HV0.5,约为TA2基体(180HV0.5)的5倍;此外,涂层的磨损率由未添加WS_2时的5.38×10~(-5) mm~3/(N·m)上升到15.98×10-5 mm~3/(N·m),耐磨性能有所下降但仍远低于基体(磨损率为66.63×10~(-5)mm~3/(N·m)),同时摩擦系数显著下降,由之前的0.49下降到0.34;同时,Si_3N_4对磨球磨损表面光滑,没有明显塑性变形,其磨损机理为轻微的塑性变形和粘着磨损。结论添加WS_2的复合涂层相对于基体依然具有良好的耐磨性能,同时由于新生的自润滑相Ti_2SC、TiS的润滑效果,涂层表现出良好的自润滑耐磨性能。  相似文献   

4.
研究了ZrO_2,Si_3N_4和SiC 3种陶瓷配副对1Cr18Ni9Ti不锈钢在90%的H_2O_2溶液中摩擦学性能的影响。结果表明,1Cr18Ni9Ti不锈钢在该环境下的摩擦学性能受配副的影响明显。与ZrO_2对磨,发生了粘着行为,导致了大的摩擦系数(0.17~0.27)和最高的1Cr18Ni9Ti不锈钢磨损量。与SiC对磨,发生了氧化和水解反应,形成的胶体膜起到了润滑作用,导致了小的摩擦系数(0.035)和最低的1Cr18Ni9Ti不锈钢磨损量。粘着行为和水解反应均发生于1Cr18Ni9Ti/Si_3N_4的磨损过程中,粘着与保护膜的耦合,导致了复杂的摩擦系数。对于配副,ZrO_2的磨损体积最大,SiC最小,Si_3N_4表面有粘着层,因此磨损体积介于上述2种陶瓷之间。  相似文献   

5.
柴琛  汪华月  陈兆祥  李云玉  高珊 《表面技术》2021,50(7):266-275, 309
目的 研究钛微弧氧化膜层在不同摩擦工况下的摩擦磨损行为,为该膜层在工业领域中的合理应用提供参考.方法 首先,在铝酸盐电解液中,通过恒压模式制备钛微弧氧化膜层,然后在四种摩擦工况下(干摩擦/GCr15对磨球、干摩擦/Al2O3对磨球、油润滑/GCr15对磨球和油润滑/Al2O3对磨球),测试微弧氧化膜层的摩擦学性能.通过XRD分析膜层的物相组成,通过SEM、EDS分析不同摩擦工况下磨痕的表面形貌和元素分布,测量膜层的摩擦系数和磨损率,探讨不同工况下钛微弧氧化膜层的摩擦磨损形式和机理.结果 干摩擦/GCr15对磨球工况下,膜层主要发生磨粒磨损,磨损率为1.4×10–5 mm3/(N·m);在干摩擦/Al2O3对磨球工况下,膜层迅速失效;在油润滑/GCr15对磨球工况下,膜层仅发生轻微磨损,表面出现疲劳剥落现象,磨损率为5.3×10–6 mm3/(N·m);在油润滑/Al2O3对磨球工况下,膜层疲劳磨损较严重,磨损率为1.5×10–5 mm3/(N·m).结论 当对磨副材料为硬度较低的金属材料时,钛微弧氧化膜层在干摩擦和油润滑工况下,均表现出良好的耐磨性,但干摩擦工况容易造成对磨副材料的严重磨损;当对磨副材料为高硬度的陶瓷材料时,干摩擦工况下,钛微弧氧化膜层的耐磨性很差,然而通过润滑油可以显著降低膜层的摩擦系数和磨损率.  相似文献   

6.
目的优化Ti_2AlNb合金微弧氧化的电解液配方,提高Ti_2AlNb合金微弧氧化膜的耐磨性。方法借助SEM、EDS、XRD研究硅酸盐-磷酸盐电解液体系中Na_2MoO_4浓度对Ti_2AlNb合金微弧氧化膜形貌、成分及相结构的影响。利用CFT-I型磨损试验机测试不同微弧氧化膜的摩擦磨损性能。结果电解液中添加Na_2MoO_4后,微弧氧化膜的生长速率增加,膜层中出现了Mo元素且含量也逐渐增加。Na_2MoO_4的加入降低了Ti_2AlNb合金微弧氧化膜的摩擦系数及比磨损率,但微弧氧化膜的耐磨性并非随Na_2MoO_4含量线性提高。含6 g/L Na_2MoO_4的体系中,微弧氧化膜摩擦系数低至0.25左右,比磨损率仅为1.20×10~(-3) mm~3/(N·m),表面呈轻微磨粒磨损特征。结论电解液中的Na_2MoO_4参与了成膜过程,对Ti_2AlNb合金微弧氧化膜的生长有显著的促进作用,有效地改善了Ti_2AlNb合金微弧氧化膜的耐磨性。  相似文献   

7.
采用FAPAS法制备了超硬AlMgB_(14)/TiB_2复合陶瓷材料,分别采用扫描电镜(SEM)及能谱(EDS),X射线衍射仪分析添加超细TiB_2第二相颗粒对复合材料微观形貌及韧性的影响;通过高温摩擦磨损试验分析了复合材料在25,300,500℃下的抗磨损性能及其摩擦学特征。结果表明,添加30%(质量分数)的微纳米级TiB_2后,AlMgB_(14)/TiB_2复合材料的平均硬度达32.5 GPa,断裂韧性由未添加时的3.0 MPa·m~(1/2)提高到3.95 MPa·m~(1/2);摩擦系数在室温及300℃时介于0.4~0.55之间,500℃时达0.65左右,磨损率1.27×10~(-6)~6.62×10~(-6) mm~3/(N·m)。随着摩擦温度的升高,试样摩擦学性能发生变化,由于摩擦表面产生氧化物的润滑作用,摩擦系数在300℃时略有减小,磨损机理由室温时的磨粒磨损转变为高温下的粘着磨损脱落。  相似文献   

8.
范春  龙威  周小平 《表面技术》2018,47(3):159-164
目的研究载荷及摩擦频率对Al-Mg_2Si复合涂层摩擦磨损性能的影响。方法用高速往复摩擦磨损测试仪考察了不同载荷及摩擦频率下的Al-Mg_2Si复合涂层的摩擦系数,并用SEM和超景深三维显微镜检测分析磨痕的表面形貌、磨痕深度和体积,对比分析载荷及摩擦频率的影响。结果载荷一定时,随着摩擦频率的增大,摩擦系数呈下降趋势,体积磨损率呈上升趋势。频率为3 Hz时,摩擦系数最小,为0.50;体积磨损率最大,为166.08×10~(-4) mm~3/(N·mm)。频率从1 Hz增至3 Hz时,摩擦系数减少了0.65,体积磨损率增加了3.1倍。频率一定时,随着载荷的增加,摩擦系数和体积磨损率均呈增加趋势。载荷为15 N时,摩擦系数和体积磨损率最大,分别为0.93和126.27×10~(-4) mm~3/(N·mm)。载荷从5 N增至15 N时,摩擦系数增加了0.27,体积磨损率增加了0.4倍。结论与载荷相比,摩擦频率对Al-Mg_2Si复合涂层摩擦性能的影响更大。  相似文献   

9.
选取TC4合金与3种对偶件微动磨损的完全滑移区,研究摩擦氧化层的形成对TC4合金微动磨损行为和摩擦系数的影响。结果表明:室温下摩擦系数曲线经历阶段性变化,磨损表面未形成摩擦氧化层,磨损率均较高。合金基体加热至260℃时,TC4/GCr15微动摩擦系数曲线最早出现由动态稳定向直线稳定的过渡,最早发生轻微磨损转变和摩擦氧化层的形成,磨损率明显减小,TC4/Si_3N_4和TC4/Al_2O_3微动磨损表面未形成摩擦氧化层,磨损率急剧攀升至最大值。继续升温至450℃时,TC4合金与3种对偶件微动磨损均形成不同于基体的摩擦氧化层,磨损率低于室温且达到最小值。TC4合金良好的高温微动磨损性能可归因于分布均匀、连续致密、粘结良好的摩擦氧化层的形成。TC4合金轻微磨损转变前微动损伤由粘着和磨粒磨损控制,轻微磨损转变后由氧化磨损伴随轻微磨粒磨损控制。  相似文献   

10.
《硬质合金》2019,(3):213-220
该工作通过氢氟酸溶液刻蚀MAX相粉末(Ti_3AlC_2)制备得到了具有"手风琴"形貌、粒径在2~6μm、质量良好的Ti_3C_2MXene。采用溶液共混法,将Ti_3C_2MXene用作填料,制备了环氧树脂复合材料,研究了其摩擦磨损性能,探讨了其性能改善机理。结果表明:Ti_3C_2MXene的引入,增强了复合材料的硬度,改善了其摩擦磨损性能。随着填料含量的增加,摩擦系数和磨损率都呈现出先下降后增加的趋势。填料含量为0.25%的环氧复合材料的磨损率为最低(5.13×10~(-5)mm~3/mN),比纯环氧树脂降低了80%。当含量为0.5%时,Ti_3C_2/环氧复合材料的摩擦系数为最低(0.21),比纯环氧树脂降低了70%。Ti_3C_2/环氧复合材料由于Ti_3C_2MXene的引入,其硬度得到提高。随着填料含量的增加,硬度逐渐升高。当填料含量为1.0%时,复合材料硬度达最大值,比纯环氧树脂提高了29.4%。  相似文献   

11.
目的通过微弧氧化共沉积工艺,获得摩擦磨损性能优良的微弧氧化-SiC复合膜。方法在硅酸钠-六偏磷酸钠-钨酸钠-多聚磷酸钠体系的微弧氧化电解液中加入2.0 g/L SiC微粒,以直流脉冲模式制备TC4钛合金微弧氧化-SiC复合膜。利用KH-7700型三维视频显微镜、XRD、SEM,对复合膜的表面、截面微观形貌和结构进行了观察分析,采用CFT-1型显微磨损试验仪检测了其在室温干摩擦条件下的摩擦磨损性能。结果 SiC复合膜层中的微孔数量明显少于不含SiC相的氧化膜层,复合膜表面分布着SiC相、金红石、锐钛矿TiO_2相、Al2Ti O5相以及非晶态的P、Si、W化合物。在干摩擦磨损条件下,微弧氧化-SiC复合膜的摩擦系数为0.26,比磨损率为0.72×10~(-6) mm~3/(N·m),微弧氧化-SiC复合膜只发生轻微的粘着磨损和磨粒磨损。结论得到了摩擦磨损性能优良的复合膜,复合膜中的SiC新相改变了氧化膜的表面形貌,降低了复合膜的摩擦系数和磨损率。  相似文献   

12.
目的为石墨增强聚酰亚胺复合材料在海水环境下的摩擦学应用提供实验依据。方法利用SST-ST销/盘摩擦试验机,研究了质量分数为15%石墨增强聚酰亚胺复合材料与17-4PH不锈钢组成的摩擦副在海水介质中的摩擦学性能,并与干摩擦和纯水润滑条件下的摩擦学性能进行比较。结果聚酰亚胺复合材料在干摩擦下的摩擦系数和磨损体积最大,分别为0.134、1.930 mm~3。干摩擦条件下,聚酰亚胺复合材料的磨损表面存在较深的犁沟,在犁沟周围出现了材料塑性流动及粘着剥落现象,对偶件表面有聚酰亚胺复合材料转移。磨损机理主要表现为磨粒磨损、材料塑性变形以及粘着和剥落。在纯水润滑下,聚酰亚胺复合材料表面存在较多材料粘着撕裂现象,同时存在宽浅不一的犁沟,磨损机理主要为粘着磨损和磨粒磨损。在海水润滑下,复合材料的摩擦系数和磨损体积最小,分别为0.086、1.235 mm~3,材料磨损表面十分光滑,只有沿运动方向存在少量轻微犁沟,磨损机理主要表现为磨粒磨损。结论石墨增强聚酰亚胺复合材料在海水中的摩擦学性能优于干摩擦和纯水环境下的摩擦学性能。  相似文献   

13.
高东强  王蕊  何乃如  王哲 《表面技术》2017,46(12):133-140
目的通过研究表明与Magnéli相相似的Ti(n-2)Cr2O(2n-1)相当6≤n≤9时,在宽温域环境下具有优异的摩擦学性能,并深入探索这种双金属氧化物结构与力学性能和摩擦学性能之间的关系。方法利用多弧离子镀技术设计制备了不同CrxTiyOz结构的双金属氧化物薄膜,研究了退火处理前后,不同结构对薄膜力学性能和摩擦学性能的影响。结果随着Ti含量的降低,原始薄膜中大颗粒的数量和尺寸减少,膜基结合力先增加后降低,摩擦系数变化幅度不明显,约为0.3,磨损率为3×10-8 mm3/(N·m)。退火处理后,薄膜的结晶度提高,随着Ti含量的降低,薄膜硬度增大,膜基结合力提高,摩擦系数和磨损率逐渐减小。结论退火处理后的薄膜如Ti含量过高,会生成Cr2Ti4O11、Cr Ti O3和Cr_2O_3复合相,从而结构变疏松,力学性能和摩擦学性能变差。  相似文献   

14.
热压烧结添加MoS2的Ti3SiC2复合陶瓷及性能   总被引:1,自引:0,他引:1  
利用热压烧结工艺(Hot—Pressing Sintering HP)制备不同MoS2质量含量的Ti3SiC2复合陶瓷,并研究其性能。研究表明,在烧结温度为1400℃,30MPa压力,保温60min的条件下,Ti3SiC2复合陶瓷烧结体的相对密度达99%以上。在Ti3SiC2中添加MoS2能大幅提高材料的性能,当MoS2含量为4州%时,Ti3SiC2复合陶瓷的显微硬度达到7.83GPa,同时它的电导率达到10.05×10^6S·m^-1。在载荷为38N和转速为400r/min下,Ti3SiC2复合陶瓷在干摩擦和油润滑两种摩擦条件下的摩擦系数分别为0.176~0.283和0.062~0.134,并且试样的磨损率分别为2.657×10^-6mm^3·N^-1·m^-1和1.968×10^-7mm^3·N^-1·m^-1,比单相Ti3SiC2陶瓷的磨损率(9.9×10^-5mm^3·N^-1·in^-1)小。  相似文献   

15.
目的 设计MoS2/Pb-Ti多层薄膜,改善真空和大气环境下的摩擦学性能。方法 采用磁控溅射技术沉积MoS2/Pb-Ti多层薄膜,通过扫描电镜(SEM)、X射线衍射(XRD)、纳米压痕仪、真空和大气摩擦磨损实验,分别评价MoS2/Pb-Ti多层薄膜的表面形貌、微观结构、力学性能、真空和大气环境下的摩擦学性能,并通过光学显微镜、能谱仪(EDS)、Raman光谱仪对磨痕及磨斑进行分析。结果 随着MoS2层厚度的增加,MoS2/Pb-Ti多层薄膜的表面颗粒逐渐细化,变得更加光滑。同时,微观结构由金属相主导转变为由MoS2相主导,弹性模量逐渐降低,硬度则先升高后降低。在真空环境下,MoS2/Pb-Ti多层薄膜的摩擦系数低至0.01,磨损率低至2.2×10?7 mm3/(N?m),大气环境下摩擦系数低至0.07左右,磨损率低至2.7×10?7 mm3/(N?m)。 结论 在真空摩擦磨损实验中,MoS2层厚度过薄时,MoS2/Pb-Ti多层薄膜的磨损机制为粘着磨损,MoS2层厚度增加有助于形成稳定的转移膜,使得摩擦磨损大幅降低。在大气摩擦磨损实验中,Ti保护MoS2的结构免于H2O和O2的破坏,使体系具有低而稳定的摩擦磨损。  相似文献   

16.
为研究生理盐水润滑条件下碳酸钙晶须含量、载荷大小、滑动速度因素对PEEK/CaCO3复合材料摩擦学性能的影响规律,并考察复合材料的摩擦学稳定性,在自制改性偶联剂处理晶须表面的基础上制备了PEEK/CaCO3复合材料,利用MMW1A立式万能摩擦磨损试验机对复合材料的摩擦学性能进行测试,用扫描电子显微镜(SEM)对磨损表面形貌进行扫描分析表征。结果表明,晶须含量对复合材料摩擦学性能影响明显,在0.9%的生理盐水润滑条件下PEEK/CaCO3复合材料随着晶须含量的增加,摩擦因数及比磨损率均呈现先减小后增大现象;当晶须质量分数为15%左右时,复合材料的摩擦因数达到最低值,同时比磨损量相对最低,复合材料与摩擦副的磨合过程相对平稳,具有较好的摩擦学性能,表现为粘着腐蚀磨损特征。外加载荷、滑动速度增大,材料的摩擦因数增大,比磨损率增加。  相似文献   

17.
多弧离子镀制备TiSiN涂层的结构及其摩擦学行为   总被引:3,自引:0,他引:3  
为了研究Si含量对TiSiN涂层性能的影响,采用多弧离子镀技术在Ti6Al4V表面制备了不同Si含量(质量分数)的TiSiN涂层。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子能谱仪(EDS)、X射线光电子能谱仪(XPS)纳米压痕仪、摩擦磨损试验机表征其表面形貌、成分,力学性能及摩擦学性能。结果表明:随着靶材中Si含量的增加,涂层硬度从35GPa增加到42GPa。在TiSiN涂层中Si元素主要以Si3N4非晶态存在,形成了非晶Si3N4包裹TiN纳米晶结构。当靶材中Si含量为8%时,涂层在海水中的磨损率约为2.1×10-6 mm3/(N·m),此时涂层的摩擦性能最好。  相似文献   

18.
本文研究了ZrO2, Si3N4 和SiC三种陶瓷配副对1Cr18Ni9Ti不锈钢在90%的H2O2溶液中摩擦学性能的影响。结果表明,1Cr18Ni9Ti不锈钢在该环境下的摩擦学性能受配副的影响明显。 与ZrO2对磨,发生了粘着行为,导致了大的摩擦系数(0.17~0.27)和最高的1Cr18Ni9Ti不锈钢磨损量。与SiC对磨,发生了氧化和水解反应,形成的胶体膜起到了润滑作用,导致了小的摩擦系数(0.035)和最低的1Cr18Ni9Ti不锈钢磨损量。粘着行为和水解反应均发生于1Cr18Ni9Ti/Si3N4的磨损过程中,粘着与保护膜的耦合,导致了复杂的摩擦系数。对于配副,ZrO2的磨损体积最大,SiC次之,Si3N4表面有粘着层,因此磨损体积最小。  相似文献   

19.
目的加入h BN作为固体润滑剂,提高Ni Cr/Cr3C2复合涂层的摩擦性能。方法采用化工冶金包覆、喷雾造粒和固相合金化技术制备Ni Cr/Cr3C2-10%h BN复合粉体,再采用等离子喷涂技术制备复合涂层。通过扫描电子显微镜(SEM)、X射线衍射(XRD)和高温摩擦磨损试验等手段研究粉体和涂层的显微结构、物相组成以及室温至800℃的摩擦磨损性能,探讨Ni Cr/Cr3C2-10%h BN复合涂层在室温和400,800℃下的磨损机理。结果等离子喷涂Ni Cr/Cr3C2-10%h BN复合涂层呈典型的层状结构,涂层结合强度可达24 MPa,孔隙率为(8.47±0.5)%。涂层的摩擦系数和磨损率均随着温度的升高而先升高,后逐渐降低,400℃时最高,分别约为0.59和9.2×10-4mm3/(N·m),800℃时分别降至0.45和4.1×10-4mm3/(N·m)。高温下,h BN润滑膜和金属氧化物的形成是摩擦系数和磨损率降低的主要原因。室温下涂层的主要磨损机制是脆性断裂;400℃时,涂层的主要磨损机制是脆性断裂、塑形变形和轻微粘着磨损;800℃时,涂层的主要磨损机制是塑性变形、氧化、粘着磨损和涂层转移至对偶件。结论等离子喷涂Ni Cr/Cr3C2-10%h BN复合涂层在室温和高温下的润滑性能较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号