首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
当前的隐私保护机器学习方法在保障数据隐私方面取得了一定进展,然而在计算效率和服务器资源利用等方面仍存在挑战。为了充分利用服务器资源,针对前馈神经网络,文章提出一种基于主从服务器架构的同态加密前馈神经网络隐私保护方案。该方案通过秘密共享技术将数据和模型参数分发至两个不共谋的服务器,并利用同态加密技术对服务器间的交互信息进行加密。在计算效率方面,通过避免耗时的密文向量和明文矩阵乘法,缩短了方案的运行时间。在安全性方面,通过引入随机噪声对秘密份额加噪,防止了服务器获得原始数据信息。实验结果表明,文章所提方案在计算复杂度和通信开销上均有显著改善。  相似文献   

2.
钱萍  吴蒙b 《计算机应用研究》2011,28(5):1614-1617
如何保护私有信息或敏感知识在数据挖掘过程中不被泄露,同时能得到较为准确的挖掘结果,是隐私保护中面临的重大挑战。近年来国内外学者对隐私保护数据挖掘(privacy-preserving data mining,PPDM)进行了大量研究,适时地对研究成果进行总结,能够明确研究方向。从分类挖掘、关联规则挖掘、聚类挖掘和安全多方计算等几个方面,总结了现有的基于同态加密技术的算法,分析了其基本原理和特点,并在此基础上指出了PPDM技术今后发展的方向。  相似文献   

3.
4.
随着数据交易市场的建立和规范化,多方协同进行机器学习建模成为新需求.联邦学习允许多个数据拥有方联合训练一个机器学习模型,适用于模型共建共用场景,但现有联邦学习计算框架无法适用于数据拥有方和模型需求方诉求不同、模型共建不共用的场景.提出一种不依赖于第三方计算平台且基于同态加密的隐私保护逻辑回归协同计算方案,包括由数据拥有方、模型需求方和密钥生成者构成的多方协同计算框架,以及基于该框架的多方交互协同计算流程,在不泄露模型信息及各方数据隐私的前提下协作完成模型训练任务,通过建立攻击模型分析协同计算方案的安全性.基于先进的浮点数全同态加密方案CKKS在小型计算机集群上实现协同计算的原型系统,并对原型系统进行计算和通信优化,包括提前终止训练和将密文同态运算卸载到GPU上提高计算效率.实验结果表明,计算优化措施获得了约50倍的速度提升,协同计算原型系统在中小规模的数据集上可满足实用性要求.  相似文献   

5.
为了解决传统车联网设备安全性相对较低可能威胁到用户隐私的问题,提出了一种基于同态加密和区块链技术的车联网隐私保护方案。此方案将由二级节点组成的验证服务添加到所提模型中,以实现模型中角色的权限控制。为了记录车联网设备信息,设计基于同态加密(HEBDS)新的块数据结构,使隐私数据可以经过 Paillier 加密算法处理后再写入区块,并由获得记账权的网关节点写入区块链网络。该方案实现了数据在密文状态下的处理,弥补了区块链网络中全部数据公开的不足。通过对该方案的安全性分析,证明此方案具有不可伪造、隐私数据安全等特性。该方案通过对隐私数据的同态加密处理再上传区块链网络,实现隐私数据以密文状态分发、共享和计算,比传统车联网模型更能有效保护用户隐私。  相似文献   

6.
针对不同应用算法的具体特点设计与之匹配的同态加密方案是设计高效的具有隐私保护功能算法的关键途径。文章首先针对深度学习预测中多项式运算只需要密文-密文加法和常数-密文乘法的特点,以多项式向量空间为明文空间,设计了一个基于系数编码的RLWE同态加密方案;然后基于该方案构造了一个同时支持多项式运算和非多项式运算的通用同态加密框架,该框架可以在RLWE密文上进行多项式运算,从RLWE密文中提取出LWE密文,通过查表方法进行非多项式运算;最后利用密文转换方法将LWE密文重新打包成RLWE密文,方便后续进行多项式运算。实验结果表明,相比于通用同态加密框架PEGASUS,文章所提框架的RLWE密文消息容量提高了1倍,并且多项式运算效率也提高了1倍。而在非多项式运算中,文章所提框架不需要转换密文中消息的编码方式,重新打包过程只需要自同构运算,因此,该框架具有更高的通信效率和运算效率。  相似文献   

7.
Cross-silo联邦学习使客户端可以在不共享原始数据的情况下通过聚合本地模型更新来协作训练一个机器学习模型。然而研究表明,训练过程中传输的中间参数也会泄露原始数据隐私,且好奇的中央服务器可能为了自身利益伪造或篡改聚合结果。针对上述问题,文章提出一种抗合谋的隐私保护与可验证cross-silo联邦学习方案。具体地,对每个客户端中间参数进行加密以保护数据隐私,同时为增强系统安全性,结合秘密共享方案实现密钥管理和协同解密。此外,通过聚合签名进一步实现数据完整性和认证,并利用多项式承诺实现中央服务器聚合梯度的可验证性。安全性分析表明,该方案不仅能保护中间参数的隐私及验证数据完整性,而且能够确保聚合梯度的正确性。同时,性能分析表明,相比于现有同类方案,文章所提方案的通信开销显著降低。  相似文献   

8.
一种基于隐私保护的关联规则挖掘算法   总被引:1,自引:0,他引:1  
为了提高隐私数据的保护程度和挖掘结果的准确性.将数据干扰和查询限制策略有机地结合起来。提出一种新的数据随机处理方法——部分隐藏的转移概率矩阵(PHTPM)数据变换方法,然后利用PHTPM对原始事务集进行变换和隐藏,并在此基础上,提出一种关联规则挖掘算法AOPAM。理论分析和实验结果表明,该算法具有更好的隐私保护性。挖掘结果更准确。  相似文献   

9.
为解决联盟链应用中用户身份隐私暴露问题,文章提出一种基于群签名和同态加密的联盟链隐私保护方案。该方案基于秘密共享算法改进群签名中单个群管理员机制,多个群管理员共同保管群私钥;基于同态加密算法协同多个群管理员产生仅群成员可知的成员私钥。与现有方案对比分析表明,该方案具有较强的匿名性、防伪造性,可有效抵抗群管理员的陷害攻击。仿真实验表明,该方案的时间开销在可接受范围之内。  相似文献   

10.
针对基于位置服务(LBS)中外包计算最短路径可能泄露用户隐私的问题,基于同态加密和安全多方计算,提出了一个基于同态加密的云环境障碍最短路径导航的隐私保护算法,为用户和数据所有者提供隐私保护.在该算法中,使用安全多方计算解决两种不同条件下计算道路中有无障碍物的最短路径隐私问题,并基于同态加密提出了有障碍物查询和无障碍物查询两个协议.最后,依照上述协议在理论和实践两个方面证明了所提出框架的有效性.  相似文献   

11.
分布式决策树挖掘的隐私保护研究   总被引:2,自引:0,他引:2  
数据挖掘中的隐私保护是试图在不精确访问原始数据值的前提下,挖掘出准确的模式与规则.围绕分布式决策树挖掘的隐私保护问题展开研究,提出一种基于同态加密技术的决策树挖掘算法,使各参与方在不共享其隐私信息的前提下达到集中式挖掘的效果.理论分析和实验结果表明,该算法具有很好的隐私性、准确性和适用性.  相似文献   

12.
在用户将其数据上传到公共平台并利用卷积神经网络进行相关操作以得到运算结果的过程中如何保证用户敏感数据的私密性就成为了一个亟待解决的问题.对此采用密码学中的同态加密算法对用户输入数据进行加密处理,在已训练过的卷积神经网络模型中对加密的数据进行预测分类,并得到最终的分类结果,输出的结果是加密形式的,为进一步保护数据的机密性...  相似文献   

13.
    
With the extensive applications of machine learning, it has been witnessed that machine learning has been applied in various fields such as e-commerce, mobile data processing, health analytics and behavioral analytics etc. Word vector training is usually deployed in machine learning to provide a model architecture and optimization, for example, to learn word embeddings from a large amount of datasets. Training word vector in machine learning needs a lot of datasets to train and then outputs a model, however, some of which might contain private and sensitive information, and the training phase will lead to the exposure of the trained model and user datasets. In order to offer utilizable, plausible, and personalized alternatives to users, this process usually also entails a breach of their privacy. For instance, the user data might contain of face,irirs and personal identities etc. This will release serious problem in the machine learning. In this article, we investigate the problem of training high-quality word vectors on encrypted datasets by using privacy-preserving learning algorithms. Firstly, we use a pseudo-random function to generate a statistical token for each word to help build the vocabulary of the word vector. Then we employ functional inner-product encryption to calculate the activation function to obtain the inner product, securely. Finally, we use BGN cryptosystem to encrypt and hide the sensitive datasets, and complete the homomorphic operation over the ciphertexts to perform the training procedure. In order to implement the privacy preservation of word vector training, we propose four privacy-preserving machine learning schemes to provide the privacy protection in our scheme. We analyze the security and efficiency of our protocols and give the numerical experiments. Compared with the existing solutions, it indicates that our scheme can provide a higher efficiency and less communication overhead.  相似文献   

14.
基于位串数组的关联规则挖掘算法   总被引:4,自引:0,他引:4  
挖掘关联规则是数据挖掘研究的一个重要方面。然而,目前提出的算法仍存在一些问题,如复杂的数据结构、候选项集生成等等。该文使用更简单的数据结构———位串数组,并提出了一种新的挖掘算法。该方法能通过并行投影和压缩技术扩展到大数据库中进行挖掘规则。  相似文献   

15.
一种基于约束的关联规则挖掘算法   总被引:1,自引:1,他引:0  
基于约束的关联规则挖掘是一种重要的关联挖掘,能按照用户给出的条件来实行有针对性的挖掘。大多数此类算法仅处理具有一种约束的挖掘,因而其应用受到一定程度的限制。提出一种新的基于约束的关联规则挖掘算法MCAL,它同时处理两种类型的约束:非单调性约束和单调性约束。算法包括3个步骤:第一步,挖掘当前数据集的频繁1项集;第二,应用约束的性质和有效剪枝策略来寻找约束点,同时生成频繁项的条件数据库;最后,递归地应用前面两步寻找条件数据库中频繁项的约束点,以生成满足约束的全部频繁项集。通过实验对比,无论从运行时间还是可扩展性来说,本算法均达到较好的效果。  相似文献   

16.
17.
Data mining mechanisms have widely been applied in various businesses and manufacturing companies across many industry sectors. Sharing data or sharing mined rules has become a trend among business partnerships, as it is perceived to be a mutually benefit way of increasing productivity for all parties involved. Nevertheless, this has also increased the risk of unexpected information leaks when releasing data. To conceal restrictive itemsets (patterns) contained in the source database, a sanitization process transforms the source database into a released database that the counterpart cannot extract sensitive rules from. The transformed result also conceals non-restrictive information as an unwanted event, called a side effect or the “misses cost”. The problem of finding an optimal sanitization method, which conceals all restrictive itemsets but minimizes the misses cost, is NP-hard. To address this challenging problem, this study proposes the maximum item conflict first (MICF) algorithm. Experimental results demonstrate that the proposed method is effective, has a low sanitization rate, and can generally achieve a significantly lower misses cost than those achieved by the MinFIA, MaxFIA, IGA and Algo2b methods in several real and artificial datasets.  相似文献   

18.
现有的机器学习算法不能对加密后的数据进行分析计算,而很多领域如医疗、金融等又要求数据保持机密性和安全性,这促进了加密机器学习的产生和发展。同态加密技术是解决这一问题的主要思路,它可以保证在不解密的情况下对密文进行计算,使得解密后的结果与对明文执行相同计算得到的结果相同。文中对同态加密在加密机器学习中的 相关 应用研究进行了综述,主要介绍了目前用同态加密实现加密机器学习的3种算法(加密神经网络、加密k-NN、加密决策树和完全随机森林),并从正确性、安全性、执行效率方面分析了方案设计,总结并对比了不同加密机器学习算法的构造思路,指出了同态加密用于加密机器学习的关键问题和进一步研究需要关注的内容,为同态加密和加密机器学习提供参考。  相似文献   

19.
挖掘关联规则中Apriori算法的改进   总被引:24,自引:0,他引:24  
本文基于对挖掘关联规则中Apriori算法的研究,给出两种改进的算法。  相似文献   

20.
在约束关联规则挖掘过程中,影响交互的制约因素是挖掘算法的执行时间。为了提高挖掘过程的交互性,文章提出一种基于两阶段的约束关联规则挖掘算法。算法利用已挖掘的关联规则,实现约束关联规则的挖掘过程。在算法实现的过程中对关联规则集存储结构进行了优化,并扩展了类SQL查询语句。实验结果表明,由于在约束条件挖掘的过程中不需要再对数据库进行挖掘处理,节省了大量的用户时间,因此算法是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号