首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
Cytokine-stimulated astrocytes and macrophages are potent producers of nitric oxide (NO), a free radical proposed to play an important role in organ-specific autoimmunity, including demyelinating diseases of the central nervous system. The aim of this study was to investigate effects of pentoxifylline (PTX), a phosphodiesterase inhibitor with immunomodulatory properties, on NO production and inducible NO synthase (iNOS) mRNA expression in rat astrocytes and macrophages. We have shown that PTX affects cytokine (interferon-gamma, IFN-gamma; interleukin-1, IL-1; tumour-necrosis factor-alpha, TNF-alpha)-induced NO production in both cell types, but in the opposite manner--enhancing in astrocytes and suppressive in macrophages. While PTX did not have any effect on enzymatic activity of iNOS in activated cells, expression of iNOS mRNA was elevated in astrocytes and decreased in macrophages treated with cytokines and PTX. Treatment with PTX alone affected neither NO production nor iNOS mRNA levels in astrocytes or macrophages. This study indicates involvement of different signalling pathways associated with iNOS induction in astrocytes and macrophages, thus emphasizing complexity of regulation of NO synthesis in different cell types.  相似文献   

7.
The work reported here resolves, at the level of gene regulation, the controversy as to whether or not human monocytes/macrophages can produce nitric oxide (NO) when stimulated with lipopolysaccharide (LPS), with or without co-stimulation by interferon-gamma (IFN-gamma). Studies included structural comparison of the promoters for human and mouse inducible NO synthase (iNOS) genes, transfection and assay of human and mouse iNOS promoter regions in response to LPS +/- IFN-gamma, and electrophoretic mobility shift assays of kappa B response elements. Two explanations for hyporesponsiveness of the human iNOS promoter to LPS +/- IFN-gamma were found: (1) multiple inactivating nucleotide substitutions in the human counterpart of the enhancer element that has been shown to regulate LPS/IFN-gamma induced expression of the mouse iNOS gene; and (2) and absence of one or more nuclear factors in human macrophages (e.g., an LPS-inducible nuclear factor-kappa B/Rel complex), that is (are) required for maximal expression of the gene. The importance of resolution of this controversy is that future research in this area should be directed toward the understanding of alternative mechanisms that can result in the successful production of NO.  相似文献   

8.
9.
10.
11.
12.
13.
Triptoquinone A (TQA), which is an anti-inflammatory constituent in plants, was studied for its suppressive effect on nitric oxide production by LPS. TQA significantly suppressed smooth muscle relaxation and increase in cyclic GMP levels by nitric oxide (NO) in an L-arginine-induced relaxation experiment. The mechanistic studies showed that TQA did not directly inhibit NO radicals and inducible nitric oxide synthase (iNOS) enzyme but suppressed IL-1 beta and iNOS mRNA expression by LPS. The suppression level of iNOS gene expression by TQA was comparable to that by dexamethasone. TQA may be a useful candidate for the development of a drug as a potent inhibitor of iNOS gene over-expression.  相似文献   

14.
15.
Murine macrophages activated by interferon (IFN)-gamma and bacterial lipopolysaccharide (LPS) produce large amounts of nitric oxide (NO), which is a critical mediator for a variety of biological functions. The expression of this inducible NO synthase (iNOS) involves a protein kinase C (PKC)-dependent pathway, but the mechanism for the PKC activation in this system is unclear. Through analysis of diacylglycerol (DAG) synthesis and choline metabolism in activated macrophages, direct evidence is provided that NO synthesis involves the activation of an unusual phosphatidylcholine-specific phospholipase C (PC-PLC) and not a phosphatidylinositol-specific phospholipase C (PI-PLC) or phospholipase D (PLD).  相似文献   

16.
17.
Aflatoxin B1 (AFB1), a potent hepatocarcinogen, is known to impair specific and non-specific immune responses. AFB1 mainly decreases lymphocyte functions and may also affect macrophages assisting lymphocyte functions. Macrophages play an important role in a host defense against tumors and bacteria. Furthermore, some macrophage products, including nitric oxide (NO), may be involved in cytotoxicity. The effect of aflatoxin B1 (AFB1) was investigated on NO production from murine peritoneal macrophages. Macrophages were pretreated with AFB1 for 24 h and then stimulated with lipopolysaccharide (LPS) for 24 h. AFB1 at 10 or 50 microM reduced the production of NO. Compared to vehicle control, there was a greater reduction of NO production with increased AFB1 pretreatment and LPS stimulation. AFB1 at 10 or 50 microM decreased inducible nitric oxide synthase (iNOS) activity about 24% and 28%, respectively, after stimulation with 1 microg/ml LPS and about 12% and 24%, respectively, after stimulation with 10 microg/ml LPS. AFB1 pretreatment also decreased the synthesis of iNOS protein and the mRNA of macrophages. Taken together, these results suggest that AFB1 pretreatment reduces NO production from murine peritoneal macrophages stimulated by LPS, which is mediated by the reduction of iNOS activity, mRNA, and protein.  相似文献   

18.
Nitrogen monoxide (NO) has diverse physiological roles and also contributes to the immune defense against viruses, bacteria, and other parasites. However, excess production of NO is associated with various diseases such arthritis, diabetes, stroke, septic shock, autoimmune, chronic inflammatory diseases, and atheriosclerosis. Cells respond to activating or depressing stimuli by enhancing or inhibiting the expression of the enzymatic machinery that produce NO. Thus, maintenance of a tight regulation of NO production is important for human health. Phytochemicals have been traditionally utilized in ways to treat a family of pathologies that have in common the disregulation of NO production. Here we report the scavenging activity of Pycnogenol (the polyphenols containing extract of the bark from Pinus maritima) against reactive oxygen and nitrogen species, and its effects on NO metabolism in the murine macrophages cell line RAW 264.7. Macrophages were activated by the bacterial wall components lipopolysaccharide (LPS) and interferon (IFN-gamma), which induces the expression of large amounts of the enzyme nitric oxide synthase (iNOS). Preincubation of cells with physiological concentrations of Pycnogenol significantly decreased NO generation. It was found that this effect was due to the combination of several different biological activities, i.e., its ROS and NO scavenging activity, inhibition of iNOS activity, and inhibition of iNOS-mRNA expression. These data begin to provide the basis for the conceptual understanding of the biological activity of Pycnogenol and possibly other polyphenolic compounds as therapeutic agents in various human disorders.  相似文献   

19.
IL-13 is a cytokine produced by T lymphocytes, mast cells, basophils, and certain B cell lines that up-regulates or inhibits various macrophage functions. In the present study we analyzed the mechanisms of suppression of nitric oxide (NO) release by IL-13 in the macrophage cell line J774A.1 and in thioglycolate-elicited mouse peritoneal macrophages. In both cell types efficient reduction (>80%) of NO production required treatment of the macrophages with IL-13 for at least 7 h before stimulation with IFN-gamma and LPS. In J774A.1 cells, increasing concentrations of IFN-gamma partially antagonized the suppression mediated by IL-13, whereas in peritoneal macrophages, the inhibitory effect of IL-13 was largely independent of the concentrations of IFN-gamma and LPS. In J774A.1 cells, IL-13 strongly reduced both the mRNA and protein levels of inducible nitric oxide synthase (iNOS, NOS-2), as determined by Northern blot analysis and immunoprecipitation. In peritoneal macrophages, in contrast, IL-13 decreased iNOS protein and enzyme activities after 8 to 48 h of stimulation, without altering the expression of iNOS mRNA. Pulse labeling with [35S]methionine revealed that IL-13 caused a 4.7-fold reduction of the de novo synthesis of iNOS protein in these cells. These data demonstrate for the first time that IL-13 is capable of regulating iNOS at both the mRNA and translational levels and underline the important influence of the macrophage population when studying mechanisms of cytokine functions.  相似文献   

20.
PURPOSE: Inducible nitric oxide (NO) synthase (iNOS) has been implicated in the pathogenesis of endotoxin-induced uveitis (EIU). This study was undertaken to localize the cells, in the eye, which express iNOS during EIU in the rat. METHODS: EIU was induced in Lewis rats by a single foot pad injection of 150 micrograms lipopolysaccharide (LPS) from Salmonella typhimurium. At different time intervals after LPS injection, the authors evaluated ocular inflammation (slit lamp observation), iNOS localization by in situ hybridization, and comparison of OX-42- and ED1-positive cell appearance and of glial response by specific immunohistochemistry. RESULTS: iNOS mRNA was not detected in the iris-ciliary body nor in the retina of control rats. It was detected strongly in the epithelial cells of the iris-ciliary body at 6 hours and also in stromal cells of the ciliary processes at 16 hours after LPS injection. In the neuroretina, iNOS mRNA was observed in the inner layers 16 hours after LPS injection. iNOS-positive cells were also present on the vitreous at this time. At 6 and approximately 16 hours after LPS injection, immunohistochemistry experiments revealed a large number of OX-42- and ED1-positive cells (microglia, macrophages, or polymorphonuclear leukocytes) colocalized in part with some iNOS-positive cells in the ciliary body and in the retina. Furthermore, expression of iNOS in Müller cells cannot be excluded. CONCLUSIONS: These observations confirm that subcutaneous injection of endotoxin dramatically induces NOS mRNA expression in the eye, and they demonstrate that epithelial cells of the iris-ciliary body and cells infiltrating the anterior segment of the eye and the retina are the major source of NO. These results support the hypothesis that both inflammatory and resident ocular cells are involved in iNOS expression during EIU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号