首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we analyze the main available data related to the geothermal system of Ischia Island, starting from the first geothermal exploration in 1939. Our aim is to define a conceptual model of the geothermal reservoir, according to geological, geochemical, geophysical and stratigraphic data. In recent times, the interest on geothermal exploitation for electricity generation in Italy is rapidly increasing and the Ischia Island is one of the main targets for future geothermal exploitation. Nowadays, one of the main economic resources of the island is the tourism, mainly driven by the famous thermal springs; so, it is crucial to study the possible interaction between geothermal exploitation and thermal spring activities. To this aim, we also analyze the possible disturbance on temperature and pressure in the shallow geothermal reservoir, due to the heat withdrawal for electric production related to small power plant size (1–5 MWe). Such analysis has been performed by using numerical simulations based on a well known thermofluid-dynamical code (TOUGH2®). Obtained results show that such geothermal exploitation generates a perturbation of temperature and pressure field which, however, is confined in a small volume around the well. At shallow level (0–100 m) the exploitation does not produce any appreciable disturbance, and can be made compatible with thermal spring exploitation. Moreover, such results are crucial both for the evaluation of volcanological processes in the island and for the general assessment of geothermal resource sustainability.  相似文献   

2.
Sixty-five water samples and seven associated gas samples have been collected on Lesbos island. The lithology and structural setting have resulted in two main types of hydrological circulation: a shallow circulation hosting low-salinity cold waters and a deeper one, hosting high-salinity hot waters that often emerge in thermal springs near the coast. The cold waters are characterized by Ca(Mg)-HCO3(SO4) composition, while the thermal waters generally have an Na-Cl composition. The chemical features of the former can be explained by their circulation in the ophiolite-bearing phyllitic basement and volcanic rocks. Waters circulating in the ultramafic layers of the basement are richer in Mg than the waters whose circulation is mainly within marble levels or volcanic rocks. The Na-Cl thermal waters are characterized by salinities ranging from 1910 to 35,700 mg/kg. As indicated by previous hydrogeochemical and isotopic studies, the Na-Cl composition of the thermal waters on Lesbos is the result of mixing between shallow meteoric waters and marine waters. While interacting with the minerals of the geothermal reservoir, the saline waters retain the Na/Cl sea water ratio but become enriched in Ca2+ and depleted in Mg2+ with respect to sea water.Processes of hydrothermal alteration at depth are activated by a gas phase enriched in CO2, which reaches the geothermal reservoir by rising along the deep fractures of the basement. Thermodynamic calculations based on hydrothermal alteration processes occurring at the estimated temperatures of the geothermal reservoir (about 120 °C) indicate that the thermal waters of Lesbos are in equilibrium with talc and dolomite.  相似文献   

3.
Chemical and isotopic data of thermal springs and wells indicate that some thermal water circuits in central and south Vietnam can reach temperatures of geothermal interest (150–200°C) in zones of normal-to-slightly anomalous thermal gradients. The low gas content and the low CO2 and H2S concentrations suggest that there is no contribution from a magmatic source. The geothermometry results indicate that the geothermal resources in south and central Vietnam are of medium enthalpy. These results confirm those of previous geochemical surveys and indicate that the most promising geothermal sites in Vietnam are Le Thuy, south of Dong Hoi and Mo Duc near Quang Nghai.  相似文献   

4.
The low-enthalpy geothermal system at Punta Banda (NW Baja California Peninsula, Mexico) has been studied because it might provide heat to future desalination plants in the city of Ensenada. Utilization of subaerial, intertidal and submarine hot springs is evaluated based on geochemical and geophysical data. The results of the geochemical studies show that the geothermal fluids have a major meteoric water component because seawater is not present at the subaerial springs and hot wells. The highest estimated reservoir temperature (140 °C) calculated using a silica geothermometer corresponds to the Agua Caliente intertidal manifestation, a promising area also identified by geophysics. Geothermometric calculations applied to the computed composition of the thermal end member yield a reservoir temperature of 137 °C. Cl/B ratios indicate that the thermal fluids discharged by the intertidal vents and subaerial springs are similar, but they differ from those of submarine vents. Geoelectrical models depict an anomalous conductive trend from the La Jolla well to the Agua Caliente manifestation, suggesting the presence of a fault that allows upflow of hot water from depth. Lastly, integration of geochemical and geophysical data identified the best site for future exploration drilling at Punta Banda.  相似文献   

5.
New Zealand has an array of geothermal systems with distinctive ecological features, with many occurring in the Taupo Volcanic Zone in the Central North Island. Associated with these geothermal features are characteristic geophysical and geochemical components, and distinctive terrestrial and aquatic ecosystems with many attributes that are common across a range of the biotic groups. Zonation amongst vegetation communities is closely related to soil temperature and these associations generally occur in a predictable sequence along the soil temperature gradient. Similarly, clear distinctions in aquatic flora and fauna occur longitudinally downstream from the source of thermal springs and vertically on geyser mounds.  相似文献   

6.
The volume method is used to evaluate the productive potential of unexploited and minimally exploited geothermal fields. The distribution of PCO2 in shallow groundwaters delimits the geothermal fields. This approach is substantiated by the good correspondence between zones of high CO2 flux, and the areal extension of explored geothermal systems of high enthalpy (Monte Amiata and Latera), medium enthalpy (Torre Alfina) and low enthalpy (Viterbo). Based on the data available for geothermal fields either under exploitation or investigated by long-term production tests, a specific productivity of 40 t h−1 km−3 is assumed. The total potential productivity for the recent volcanic areas of Latium is about 28 × 103 t h−1, with 75% from low-enthalpy geothermal fields, 17% from medium-enthalpy systems, and 8% from high-enthalpy reservoirs. The total extractable thermal power is estimated to be 2220–2920 MW, 49–53% from low-enthalpy geothermal fields, 28–32% from medium-enthalpy systems, and 19–20% from high-enthalpy reservoirs.  相似文献   

7.
地球化学勘探技术在水热型地热资源勘探中的应用研究具有较长的历史,迄今已形成了一套基于气体与元素指标的勘探技术体系,涵盖了众多技术指标,且已在世界各地诸多地热田勘探研究中获得了广泛应用。结果揭示,在预测地热田发育有利部位、估算深部热储温度以及推断地热水来源等方面,地球化学勘探技术都可发挥其特有的作用,是一种经济有效的地热勘探技术,具有良好的应用前景。但地热地球化学勘探技术也面临其自身的局限性,其应用研究不仅受地热田类型的限制,而且目前主要集中于已知地热田上方的验证性研究,技术本身的多解性也较强。因此,在地热地球化学勘探技术完善与应用研究方面,还有待进一步深化。  相似文献   

8.
The low-temperature geothermal field of Nea Kessani, located in NE Greece, is characterized by a thermal reservoir made up of arkosic sandstones. The temperature distribution at depth, inferred from exploratory and productive wells, indicates that hot fluids rising from depth enter the arkosic reservoir in a restricted area of the field and flow towards local thermal springs. Well production tests have revealed the presence of hydrogeological boundaries within the arkosic reservoir.The geochemical characteristics of the thermal waters, which have an NaCl/HCO3 composition and salinity varying between 5 and 6 g/L, indicate that these waters undergo conductive cooling within the reservoir. No admixture of waters from the aquifers in the cover has been observed. The slight chemical differences existing between the thermal waters are probably caused by CO2, which represents about two thirds by volume of the discharged fluid. This CO2, as indicated by its isotopic composition, could originate from decomposition of marbles of the Paleozoic basement underlying the arkosic reservoir and may also affect the isotopic composition of the thermal waters, which exhibit an interesting positive oxygen shift. However, such a shift could also be the result of water-rock exchange processes at low temperatures, since the water feeding the field comes from a regional circulation which, as indicated by its deuterium content, has recharge areas on the Rhodope Chain. Alternatively, the shift could be attributed to the contribution of a deep-seated high-temperature geothermal reservoir, but a present there is no evidence of high-temperature resources in the region. A maximum temperature of 110°C has been estimated by quartz geothermometry.The physical, chemical and hydrogeological data available so far have permitted us to formulate a fluid circulation model for the Nea Kessani geothermal field.  相似文献   

9.
Geological, geochemical and geophysical studies have been carried out in the Soufrière caldera, St. Lucia, Lesser Antilles. The results are in accordance with the data obtained from previously drilled wells. In particular, these studies have also been used to: (i) determine the extent of the heat anomaly; (ii) indicate the levels containing hot geothermal fluids for high enthalpy exploitation; (iii) estimate the nature and extent of the reservoir; (iv) construct a preliminary model of the geothermal system, with a fluid at 220°C and a deeper one at about 350°C, both originating from a concentrated brine. Heat flux is estimated to be 6–7 times the average terrestrial value (250 – 290 mW/m2); (v) determine the most favourable areas for deep drilling.  相似文献   

10.
A socio-economic study has been made of the possible use of low enthalpy geothermal resources for district and greenhouse heating in the Traianoupolis Evros region. The thermal energy potential of the Aristino-Traianoupolis geothermal field has been estimated at 10.8 MWth (discharge temperature of 25 °C). Geothermal wellhead water temperatures range from 53 to 92 °C, from 300 m deep wells yielding over 250 m3/h. Our conclusions show, amongst the different scenarios examined and on the basis of a market study, that utilisation of this geothermal energy capacity for district heating of nearby villages, and/or greenhouse heating directed at serving local vegetable markets, would be an attractive investment.  相似文献   

11.
Higher demand for energy consumption and importance of environmental issues has encouraged researchers and policy makers to consider renewable energies more seriously. Geothermal resources are a green energy source that can make a considerable contribution in some countries. Japan has the third ranking geothermal energy potential, and its geothermal electricity production is currently eighth in the world. Since the nature of geothermal resources dictates its method of utilization, it is important to categorize available resources. There is no consensus on classification of geothermal resources. Most scientists, from geologist to engineers, agree on the term temperature. However, temperature or enthalpy alone cannot describe the nature of fluids; they can have same temperature with different phases, such as saturated water or saturated steam. Using exergy for resource classification benefits their comparison, according to their ability to do work. In this paper, exergetic classification of geothermal resources was applied to 18 under‐operating geothermal power plants in Japan. Six geothermal fields have high exergy resources according to their SExI values in excess of 0.5. The remaining geothermal fields in Japan are classified in the medium resources zone. Classification results can be used by decision makers as a reference for future geothermal development. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
《Geothermics》1998,27(1):75-87
The geological, geoelectrical, geochemical and temperature data related to the Chaves geothermal system have been integrated to obtain a better understanding of the Chaves basin. Geoelectrical surveys carried out in the basin reveal a low-resistivity zone (10 ohm m), associated with a shallow geothermal reservoir, in the central part of the graben, bounded by higher-resistivity rocks. The top of this zone varies between 400 and 200 m and its maximum thickness (1600 m) is located at the centre of the basin. Thermal models for the Chaves basin and for the region are presented using the structure obtained by geoelectrical methods and a mean heat flow value of 95 mW m-2 derived from borehole measurements. The heat transfer takes place mainly by conduction, except near the faults, where convective flow is important. The medium is considered dishomogeneous and there is a great thermal conductivity contrast between the sediments in the basin and the surrounding rocks. The results obtained for the Chaves basin show that the mean temperature value in the shallow geothermal reservoir is 62°C. The maximum temperature value predicted to the bottom of this reservoir is 95°C. A regional forced convective-circulation model is suggested based on geomorphological, geochemical, isotopic data and to rmal models.  相似文献   

13.
Turkey is the seventh-richest country in the world in geothermal potential. The first geothermal researches and investigations in Turkey started by the Turkey Mineral Research and Exploration Institute (MTA) in the 1960s. Upon this, 170 geothermal fields have been discovered by MTA, in which 95% of them are low-medium enthalpy fields, which are suitable mostly for direct-use applications. The overall geothermal potential in Turkey is about 38,000 MW. Of this potential, around 88% is appropriate for thermal use (temperature less than 473 K) and the remainder is appropriate for electricity production (temperature more than 473 K). Turkey has extended its involvement in geothermal energy projects, supported by loans from the Ministry of Environment, and geothermal energy is expected to increase substantially in the coming years. Overall, Turkey has an estimated 4,500 MW of geothermal power production potential.  相似文献   

14.
Reconnaissance surveys undertaken since the 1960s show that more than 200 geothermal prospects with significant active surface manifestations occur throughout Indonesia. Some 70 of these were identified by the mid-1980s as potential high-temperature systems using geochemical criteria of discharged thermal fluids. Between 1970 and 1995, about 40 of these were explored using geological mapping, geochemical and detailed geophysical surveys. Almost half of the surveyed prospects were tested by deep (0.5–3 km) exploratory drilling, which led to the discovery of 15 productive high-temperature reservoirs. Several types of reservoirs were encountered: liquid-dominated, vapour-dominated, and a vapour layer/liquid-saturated substratum type. All three may be modified by upflows (plumes) containing magmatic fluid components (volcanic geothermal systems). Large, concealed outflows are a common feature of liquid-dominated systems in mountainous terrain. All explored prospects are hosted by Quaternary volcanic rocks, associated with arc volcanism, and half occur beneath the slopes of active or dormant stratovolcanoes. By 1995, five fields had been developed by drilling of production wells; three of them supplied steam to plants with a total installed capacity of 305 MWe. By 2000, with input from foreign investors, the installed capacity had reached 800 MWe in six fields, but geothermal developments had stalled because of the 1997–1998 financial crisis.  相似文献   

15.
In order to assess the geothermal resources of the hot springs located in different tectonic regions of India, preliminary geophysical, geochemical and tritium studies were undertaken in Puga valley (Ladakh), Ratnagiri and Kolaba Districts (West Coast) and Bhimbandh (Bihar) areas. The studies indicate that out of the three areas investigated, the Puga valley is the most promising because of its higher geothermal gradient, association of spring waters with magmatic components, its higher estimated reservoir temperature (≥ 200°C) and probable larger available supply of groundwater.  相似文献   

16.
Since Roman time, the heat produced by Neapolitan volcanoes was an appeal for people living in and outside the area, for the fruition of the famous thermal baths. This very large area, which spans from Campi Flegrei and Ischia calderas to Somma-Vesuvius volcano, is characterized by high temperature at shallow depth and intense heat flow, and is yet utilized for the bathing and spa treatment industry, while only in the middle of the 20th century a tentative of geothermal exploitation for energy production was performed. Pioneering researches of geothermal resource were carried out in Campanian region since 1930, until 1985, during which a large amount of geological data were collected. In this paper, we make for the first time a review of the history of geothermal explorations in the active Campanian volcanic area. By the analysis of a great amount of literature data and technical reports we reconstruct the chronology and the main information of the drillings performed since 1930 by the SAFEN Company and successively in the framework of the ENEL-AGIP Joint Venture for geothermal exploration. The available data are utilized to correlate the temperatures measured within the deeper wells with the possible sources of geothermal heat in the shallow crust, down to about 8-10 km of depth. Finally, we assess the geothermal potential of the hottest areas, Ischia Island and Campi Flegrei, which have shown the best data and favorable physical conditions for a reliable, and cost-effective, exploitation for thermal and electric purposes.  相似文献   

17.
Groundwater monitoring began in 1985 at two geothermal facilities in the Steamboat Hills area, Nevada. Wells representing non-thermal, thermal, and mixed waters are evaluated by assessing temporal variations in B and Cl concentrations, water levels, and temperature. The objective is to assess the hydrologic and geochemical connection between the fractured bedrock geothermal reservoir and the alluvial aquifer. Results suggest that fault-controlled groundwater flow between the geothermal system and the alluvial aquifer is the dominant hydrologic process. Temporal trends suggest that the thermal water component in the alluvial aquifer has increased in most areas but decreased in at least one area.  相似文献   

18.
Yun Teng  Katsuaki Koike   《Geothermics》2007,36(6):518-538
The accurate imaging of geothermal systems from the ground surface down to great depths is an interdisciplinary problem common to geothermal resource exploration and development. Rocks can be characterized mainly in terms of their lithology, mineralogy, fracture distribution, permeability, thermal conductivity and porosity, and similarly the geothermal fluid (and its circulation) by its geochemistry, flow pattern, velocity, temperature and pressure. Some of these data are obtained by well logging and from laboratory tests conducted on drillhole cores. In general, the distribution of geothermal wells is not random, and well data are limited in terms of quantity and depth range. Accordingly, a sophisticated spatial modeling technique is indispensable in the three-dimensional imaging of geothermal systems. We describe a versatile 3-D modeling method that can be used to determine the temperature, flow velocity, and distribution of geological units within a geothermal field based on well log data. The model results for the Hohi geothermal area, Japan, provide plausible estimates of temperature, flow velocity, and geology to a depth of 3000 m. Superimposition of the three spatial models we obtained shows that, at Hohi, two geothermal reservoirs are localized near highly fractured fault zones that provide paths for the ascent of thermal fluids from depth.  相似文献   

19.
The Latera and Torre Alfina geothermal fields were discovered in the Vulsini Mts district (central Italy) in the 70s. The fluid produced by the two geothermal systems is a high pCO2 (around 7 MPa) sodium chloride solution (T.D.S. is 9200 ppm at Latera and 7800 at Torre Alfina), with high SiO2 and H3BO3 contents. The fluid temperature taken at well bottom is about 155°C at Torre Alfina, whereas at Latera it ranges from 200 to over 350°C. In spite of these temperatures, recorded in producing wells, previous geochemical prospectings using geothermometers in natural thermal manifestations had predicted temperatures no higher than 140°C in all the Vulsini district. This contrasting feature between real temperatures and those evaluated during prospecting is caused by the fast circulation of large amounts of meteoric waters in the aquifer located in the shallow parts of the carbonate reservoir formations, and by the short interaction between the latter and the deep geothermal fluids.In the present study a new geochemical survey on thermal and cold springs, stream samples, as well as natural gas emissions has been carried out. A critical review of the main geothermometers, some considerations about the hydraulic behavior of the reservoir formations, and the cross comparison between NH4+/B ratio, pCO2 and SiO2 content in both cold and thermal waters, have led to the conclusion that in the Vulsini Mts there are no shallow anomalous areas apart from those already discovered at Latera and Torre Alfina.The present method could be successfully applied in other geothermal systems, where the potential reservoir is represented by carbonate formations.  相似文献   

20.
This study addresses the hydrogeochemistry of thermal springs that emerge from the Asmari limestone in a gorge at Changal Anticline in the vicinity of the Salman-Farsi dam. The Changal thermal springs vary in temperature between 28 and 40 °C. Chemical and isotopic compositions of the thermal waters suggest two distinct hydrogeological systems: a deep, moderate-temperature (∼40 °C) geothermal system recharged by deeply circulating meteoric waters, and a shallow cold aquifer system related to local groundwater. The source geothermal fluid temperature was calculated using different geothermometers and mineral saturation indexes. Based on chemical and isotopic data, it is hypothesized that: (1) mixing occurs between the ascending geothermal water and shallow cold water; (2) the resulting thermal waters reaching surface are a mixture of 80% local, shallow meteoric water and 20% geothermal water; and (3) the circulation depth of the meteoric water is about 1500 m. The thermal reservoir temperature is estimated to be between 70 and 80 °C according to calculations using different geothermometers and computation of saturation indices for different solid phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号