首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The electron transfer between formate dehydrogenase and cytochrome c553 from the anaerobic bacteria Desulfovibrio vulgaris Hildenborough has been investigated. Parameters of the electron transfer kinetics are reported. The ionic strength dependence of the complex formation has been evidenced. Two mutants of cytochrome c553 have been obtained using site-directed mutagenesis with the substitutions K62E and K62E,K63E. According to one-dimensional and two-dimensional NMR analysis, the two variants were found to have the same folding pattern as that of the wild-type cytochrome. The replacements of the lysine residues by acidic groups have important effects on the affinity between the two oxidoreduction partners. K62 and K63 are essential for recognition between the formate dehydrogenase and the cytochrome c553. Previous structural studies of cytochrome c553 have demonstrated the involvement of the polypeptide chain in the modulation of the particular low oxidoreduction potential of this cytochrome. The present study provides evidence that, during the evolution of cytochromes from the anaerobic metabolism to aerobic respiration and photosynthesis, the electrostatic distribution at the recognised encounter surface around the heme is highly conserved in all cytochromes.  相似文献   

2.
The growth of the syntrophic propionate-oxidizing bacterium strain MPOB in pure culture by fumarate disproportionation into carbon dioxide and succinate and by fumarate reduction with propionate, formate or hydrogen as electron donor was studied. The highest growth yield, 12.2 g dry cells/mol fumarate, was observed for growth by fumarate disproportionation. In the presence of hydrogen, formate or propionate, the growth yield was more than twice as low: 4.8, 4.6, and 5.2 g dry cells/mol fumarate, respectively. The location of enzymes that are involved in the electron transport chain during fumarate reduction in strain MPOB was analyzed. Fumarate reductase, succinate dehydrogenase, and ATPase were membrane-bound, while formate dehydrogenase and hydrogenase were loosely attached to the periplasmic side of the membrane. The cells contained cytochrome c, cytochrome b, menaquinone-6 and menaquinone-7 as possible electron carriers. Fumarate reduction with hydrogen in membranes of strain MPOB was inhibited by 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO). This inhibition, together with the activity of fumarate reductase with reduced 2,3-dimethyl-1,4-naphtoquinone (DMNH2) and the observation that cytochrome b of strain MPOB was oxidized by fumarate, suggested that menequinone and cytochrome b are involved in the electron transport during fumarate reduction in strain MPOB. The growth yields of fumarate reduction with hydrogen or formate as electron donor were similar to the growth yield of Wolinella succinogenes. Therefore, it can be assumed that strain MPOB gains the same amount of ATP from fumarate reduction as W. succinogenes, i. e. 0.7 mol ATP/mol fumarate. This value supports the hypothesis that syntrophic propionate-oxidizing bacteria have to invest two-thirds of an ATP via reversed electron transport in the succinate oxidation step during the oxidation of propionate. The same electron transport chain that is involved in fumarate reduction may operate in the reversed direction to drive the energetically unfavourable oxidation of succinate during syntrophic propionate oxidation since (1) cytochrome b was reduced by succinate and (2) succinate oxidation was similarly inhibited by HOQNO as fumarate reduction.  相似文献   

3.
Although ligand binding in c-type cytochromes is not directly related to their physiological function, it has the potential to provide valuable information on protein stability and dynamics, particularly in the region of the methionine sixth heme ligand and the nearby peptide chain that has been implicated in electron transfer. Thus, we have measured the equilibrium and kinetics of binding of imidazole to eight mutants of Rhodobacter capsulatus cytochrome c2 that differ in overall protein stability. We found that imidazole binding affinity varies 70-fold, but does not correlate with overall protein stability. Instead, each mutant exerts an effect at the local level, with the largest change due to mutant G95E (glycine substituted by glutamate), which shows 30-fold stronger binding as compared with the wild-type protein. The kinetics of imidazole binding are monophasic and reach saturation at high ligand concentrations for all the mutants and wild-type protein, which is attributed to a rate-limiting conformational change leading to breakage of the iron-methionine bond and providing a binding site for imidazole. The mutants show as much as an 18-fold variation in the first-order rate constant for the conformational change, with the largest effect found with mutant G95E. The kinetics also show a lack of correlation with overall protein stability, but are consistent with localized effects on the dynamics of hinge region 88-102 of the protein, which changes conformation to permit ligand binding. These results are consistent with R. capsulatus cytochrome c2 stabilizing the complex through hydrogen bonding to the imidazole. The larger effects of mutant G95E on equilibrium and kinetics are likely to be due to its location within the hinge region adjacent to heme ligand methionine 96, which is displaced by imidazole.  相似文献   

4.
A ruthenium-labeled cytochrome c derivative was prepared to meet two design criteria: the ruthenium group must transfer an electron rapidly to the heme group, but not alter the interaction with cytochrome c oxidase. Site-directed mutagenesis was used to replace His39 on the backside of yeast C102T iso-1-cytochrome c with a cysteine residue, and the single sulfhydryl group was labeled with (4-bromomethyl-4' methylbipyridine) (bis-bipyridine)ruthenium(II) to form Ru-39-cytochrome c (cyt c). There is an efficient pathway for electron transfer from the ruthenium group to the heme group of Ru-39-cyt c comprising 13 covalent bonds and one hydrogen bond. Electron transfer from the excited state Ru(II*) to ferric heme c occurred with a rate constant of (6.0 +/- 2.0) x 10(5) s-1, followed by electron transfer from ferrous heme c to Ru(III) with a rate constant of (1.0 +/- 0.2) x 10(6) s-1. Laser excitation of a complex between Ru-39-cyt c and beef cytochrome c oxidase in low ionic strength buffer (5 mM phosphate, pH7) resulted in electron transfer from photoreduced heme c to CuA with a rate constant of (6 +/- 2) x 10(4) s-1, followed by electron transfer from CuA to heme a with a rate constant of (1.8 +/- 0.3) x 10(4) s-1. Increasing the ionic strength to 100 mM leads to bimolecular kinetics as the complex is dissociated. The second-order rate constant is (2.5 +/- 0.4) x 10(7) M-1s-1 at 230 mM ionic strength, nearly the same as that of wild-type iso-1-cytochrome c.  相似文献   

5.
The properties of the primary electron donor in reaction centers from Rhodobacter sphaeroides have been investigated in mutants containing a bacteriochlorophyll (BChl)--bacteriopheophytin (BPhe) dimer with and without hydrogen bonds to the conjugated carbonyl groups. The heterodimer mutation His M202 to Leu was combined with each of the following mutations: His L168 to Phe, which should remove an existing hydrogen bond to the BChl molecule; Leu L131 to His, which should add a hydrogen bond to the BChl molecule; and Leu M160 to His and Phe M197 to His, each of which should add a hydrogen bond to the BPhe molecule [Rautter, J., Lendzian, F., Schulz, C., Fetsch, A., Kuhn M., Lin, X., Williams, J. C., Allen J. P., & Lubitz, W. (1995) Biochemistry 34, 8130-8143]. Pigment extractions and Fourier transform Raman spectra confirm that all of the mutants contain a heterodimer. The bands in the resonance Raman spectra arising from the BPhe molecule, which is selectively enhanced, exhibit the shifts expected for the addition of a hydrogen bond to the 9-keto and 2-acetyl carbonyl groups. The oxidation--reduction midpoint potential of the donor is increased by approximately 85 mV by the addition of a hydrogen bond to the BChl molecule but is only increased by approximately 15 mV by the addition of a hydrogen bond to the BPhe molecule. An increase in the rate of charge recombination from the primary quinone is correlated with an increase in the midpoint potential. The yield of electron transfer to the primary quinone is 5-fold reduced for the mutants with a hydrogen bond to the BPhe molecule. Room- and low-temperature optical absorption spectra show small differences from the features that are typical for the heterodimer, except that a large increase in absorption is observed around 860-900 nm for the donor Qy band in the mutant that adds a hydrogen bond to the BChl molecule. The changes in the optical spectra and the yield of electron transfer are consistent with a model in which the addition of a hydrogen bond to the BChl molecule increases the energy of an internal charge transfer state while the addition to the BPhe molecule stabilizes this state. The results show that the properties of the heterodimer are different depending on which side is hydrogen-bonded and suggest that the hydrogen bonds alter the energy of the internal charge transfer state in a well-defined manner.  相似文献   

6.
Y64 has been replaced in cytochrome c553 from Desulfovibrio vulgaris Hildenborough by phenylalanine, leucine, valine, serine and alanine residues. An NMR study of structural variation induced in both oxidoreduction states of the molecule has been carried out by analysing observed chemical-shift variations. Dynamic changes were evidenced using NH exchange. We have observed that the substitution has a drastic effect on the stability of the molecule in the reduced state, although there is no effect on the reduction potential of the cytochrome. Y64-->F substitution induces particular effects on the NH exchange at the N-terminal, C-terminal and central alpha-helices and increases the stability of the oxidized molecule.  相似文献   

7.
Two mutants of cytochrome c peroxidase (CCP) are reported which exhibit unique specificities toward oxidation of small substrates. Ala-147 in CCP is located near the delta-meso edge of the heme and along the solvent access channel through which H2O2 is thought to approach the active site. This residue was replaced with Met and Tyr to investigate the hypothesis that small molecule substrates are oxidized at the exposed delta-meso edge of the heme. X-ray crystallographic analyses confirm that the side chains of A147M and A147Y are positioned over the delta-meso heme position and might therefore modify small molecule access to the oxidized heme cofactor. Steady-state kinetic measurements show that cytochrome c oxidation is enhanced 3-fold for A147Y relative to wild type, while small molecule oxidation is altered to varying degrees depending on the substrate and mutant. For example, oxidation of phenols by A147Y is reduced to less than 20% relative to the wild-type enzyme, while Vmax/e for oxidation of other small molecules is less affected by either mutation. However, the "specificity" of aniline oxidation by A147M, i.e., (Vmax/e)/Km, is 43-fold higher than in wild-type enzyme, suggesting that a specific interaction for aniline has been introduced by the mutation. Stopped-flow kinetic data show that the restricted heme access in A147Y or A147M slows the reaction between the enzyme and H202, but not to an extent that it becomes rate limiting for the oxidation of the substrates examined. The rate constant for compound ES formation with A147Y is 2.5 times slower than wild-type CCP. These observations strongly support the suggestion that small molecule oxidations occur at sites on the enzyme distinct from those utilized by cytochrome c and that the specificity of small molecule oxidation can be significantly modulated by manipulating access to the heme edge. The results help to define the role of alternative electron transfer pathways in cytochrome c peroxidase and may have useful applications in improving the specificity of peroxidase with engineered function.  相似文献   

8.
Site-directed mutagenesis has been used to produce variants of a tryptic fragment of bovine liver cytochrome b5 in which Glu44 and Glu56 are mutated to alanine. The reduction potentials measured by spectroelectrochemical titration (in the presence of 1 mM (Ru(NH3)6)3+, pH 7.0 and I=0.1 M) are 4.5, 6.0, 6.0 and 7.5 mV versus the standard hydrogen electrode (SHE) for the wild-type and E44A, E56A and E44/56A mutants of cytochrome b5, respectively. A comparative two-dimensional NMR study of cytochrome b5 and its E44/56A mutant in water solution has been achieved. Resonance assignments of side-chains have been completed successfully. The NMR results suggest that the secondary structures and global folding of the E44/56A mutant remain unchanged, but the mutation of both Glu44 and Glu56 to hydrophobic alanine may lead to the two helices containing mutated residues contracting towards the heme center. The inner mobility of the Gly42 approximately Glu44 segment in cytochrome b5 may be responsible for the difference of the binding mode between Glu44 and Glu56 with cytochrome c. The binding between cytochrome c and cytochrome b5 was studied by optical difference spectra of cytochrome c and variants of cytochrome b5. The association constants (KA) for the wild-type, E44A, E56A, and E44/56A mutants of cytochrome b5 with cytochrome c, are 4.70(+/-0. 10)x10(6) M-1, 1.88(+/-0.03)x10(6) M-1, 2.70(+/-0.13)x10(6) M-1, and 1.14(+/-0.05)x10(6) M-1, respectively. This is indicative that both Glu44 and Glu56 are involved in the complex formation between cytochrome b5 and cytochrome c. The reduction of horse heart ferricytochrome c by recombinant ferrocytochrome b5 and its mutants has been studied. The rate constant of the electron transfer reaction between ferricytochrome c and wild-type ferrocytochrome b5 (1.074(+/-0.49)x10(7) M-1 s-1) is higher than those of the mutant protein E44A (8.98(+/-0.20)x10(6) M-1 s-1), E56A (8.76(+/-0. 39)x10(6) M-1 s-1), and E44/56A (8.02(+/-0.38)x10(6) M-1 s-1) at 15 degreesC, pH 7.0, I=0.35 M. The rate constants are strongly dependent on ionic strength and temperature. These studies, by means of a series of techniques, provide conclusive results that the interaction between cytochrome b5 and cytochrome c is electrostatically guided, and, more importantly, that both Glu44 and Glu56 participate in the electron transfer reaction.  相似文献   

9.
The reactions of horse heart cytochrome c, hydrogen peroxide, and the spin trap 3,5-dibromo-4-nitrosobenzenesulfonic acid with a series of polypeptides were investigated using mass spectrometry. The mass spectra obtained from these reactions revealed that after a free radical has been generated on the heme-containing protein horse heart cytochrome c, it can be transferred to other biomolecules. In addition, the number of free radicals transferred to the target molecule could be determined. Recipient peptides/proteins that contained a tyrosine and/or tryptophan amino acid residue were most susceptible to free radical transfer. Using tandem mass spectrometry, the location of the 3,5-dibromo-4-nitrosobenzenesulfonic acid radical adduct on the nonapeptide RWIILGLNK was unequivocally determined to be at the tryptophan residue. We also demonstrated that the presence of an antioxidant in the reaction mixture not only inhibits free radical formation on horse heart cytochrome c, but also interferes with the transfer of the free radical, once it has been formed on cytochrome c.  相似文献   

10.
Chloroplasts and cyanobacteria contain genes encoding polypeptides homologous to some subunits of the mitochondrial respiratory NADH-ubiquinol oxidoreductase complex (NADH dehydrogenase). Nothing is known of the role of the NADH dehydrogenase complex in photosynthesis, respiration, or other functions in chloroplasts, and little is known about the specific roles of the perhaps 42 subunits of this complex in the mitochondrion. Inactivation of a gene for subunit 4 (ndhD-2, ndh4) of this complex in the cyanobacterium Synechocystis 6803 has no effect on photosynthesis, judging from the rate of photoautotrophic growth of mutant cells, but the mutant's respiratory rate is about 6 times greater than that of wild-type cells. Respiratory electron transport activity in cyanobacteria is associated both with photosynthetic thylakoid membranes and with the outer cytoplasmic membrane of the cell. Cytoplasmic membranes of mutant cells have much greater NADH-dependent cytochrome reductase activity than preparations from wild-type cells; this activity remains at wild-type levels in isolated thylakoid membranes. It is suggested that the 56.6-kD product of ndhD-2 is not essential for the activity of a cytoplasmic membrane-bound NADH dehydrogenase but that it regulates the rate of electron flow through the complex, establishing a link between this ndh gene and respiration. The activity of the molecularly distinct thylakoid-bound NADH dehydrogenase is apparently unaffected by the loss of ndhD-2.  相似文献   

11.
The cyanide-ligated form of the baker's yeast cytochrome c peroxidase mutant bearing the mutation Asn82-->Ala82 ([N82A]CcPCN) has been studied by proton NMR spectroscopy. This mutation alters an amino acid that forms a hydrogen bond to His52, the distal histidine residue that interacts in the heme pocket with heme-bound ligands. His52 is a residue critical to cytochrome c peroxidase's normal function. Proton hyperfine resonance assignments have been made for the cyanide-ligated form of the mutant by comparison with 1-D and NOESY spectra of the wild-type native enzyme. For [N82A]CcPCN, proton NMR spectra reveal two significant phenomena. First, similar to results published for the related mutant [N82D]CcPCN [Satterlee, J. D., et al. (1994) Eur. J. Biochem. 244, 81-87], for Ala82 mutation disrupts the hydrogen bond between His52 and the heme-ligated CN. Second, four of the 24 resolved hyperfine-shifted resonances are doubled in the mutant enzyme's proton spectrum, leading to the concept that the heme active site environment is dynamically microheterogeneous on a very localized scale. Two magnetically inequivalent enzyme forms are detected in a pure enzyme preparation. Varying temperature causes the two enzyme forms to interconvert. Magnetization transfer experiments further document this interconversion between enzyme forms and have been used to determine that the rate of interconversion is 250 (+/- 53) s-1. The equilibrium constant at 20 degrees C is 1.5. Equilibrium constants have been calculated at various temperatures between 5 and 29 degrees C leading to the following values: delta H = 60 kJ mol-1; delta S = 0.20 kJ K-1 mol-1.  相似文献   

12.
Rabbit liver microsomal cytochrome b5 was allowed to react with tetranitromethane. Up to three tyrosine residues in each cytochrome b5 molecule were found to be accessible to the nitrating agent. Co-modification of tryptophan and histidine residues could be disregarded. CD-spectral measurements disproved gross changes in cytochrome b5 structure as a consequence of derivatization. Introduction of 1.6 nitro groups/polypeptide chain resulted in a fivefold increase in binding affinity for cytochrome P-450 2B4 (P-450 2B4), whereas spectral interaction with cytochrome c remained unaffected. Furthermore, the capacity of nitrated cytochrome b5 to shift the spin equilibrium to the high-spin conformer of P-4502B4 was diminished by 44% compared with the control. This corresponded with the partial disruption of NADH-dependent electron flow to ferric P-450 2B4. Changes in the redox potential of cytochrome b5 could be discounted as being responsible for this effect. The overall oxidative turnover of 4-nitroanisole did not respond to cytochrome b5 modification. MS analysis and sequencing of peptide fragments produced by tryptic digestion of modified cytochrome b5 permitted the detection of three nitrated tyrosine residues located at positions 11, 34 and 129. Derivatization of cytochrome b5 in the presence of a protective amount of P-450 2B4 provided evidence of the involvement of Tyr34 and Tyr129 in complexation of the two hemoproteins. It is proposed that Tyr129 might control docking of cytochrome b5 to P-450 2B4, whereas Tyr34 could be of functional importance in electron transfer.  相似文献   

13.
14.
An extracellular electron carrier excreted into the growth medium by cells of Geobacter sulfurreducens was identified as a c-type cytochrome. The cytochrome was found to be distributed in about equal amounts in the membrane fraction, the periplasmic space, and the surrounding medium during all phases of growth with acetate plus fumarate. It was isolated from periplasmic preparations and purified to homogeneity by cation-exchange chromatography, gel filtration, and hydrophobic interaction chromatography. The electrophoretically homogeneous cytochrome had a molecular mass of 9.57 +/- 0.02 kDa and exhibited in its reduced state absorption maxima at wavelengths of 552, 522, and 419 nm. The midpoint redox potential determined by redox titration was -0.167 V. With respect to molecular mass, redox properties, and molecular features, this cytochrome exhibited its highest similarity to the cytochromes c of Desulfovibrio salexigens and Desulfuromonas acetoxidans. The G. sulfurreducens cytochrome c reduced ferrihydrite (Fe(OH)3), Fe(III) nitrilotriacetic acid, Fe(III) citrate, and manganese dioxide at high rates. Elemental sulfur, anthraquinone disulfonate, and humic acids were reduced more slowly. G. sulfurreducens reduced the cytochrome with acetate as an electron donor and oxidized it with fumarate. Wolinella succinogenes was able to reduce externally provided cytochrome c of G. sulfurreducens with molecular hydrogen or formate as an electron donor and oxidized it with fumarate or nitrate as an electron acceptor. A coculture could be established in which G. sulfurreducens reduced the cytochrome with acetate, and the reduced cytochrome was reoxidized by W. succinogenes in the presence of nitrate. We conclude that this cytochrome can act as iron(III) reductase for electron transfer to insoluble iron hydroxides or to sulfur, manganese dioxide, or other oxidized compounds, and it can transfer electrons to partner bacteria.  相似文献   

15.
The reaction with dioxygen of solubilized fully-reduced wild-type and EQ(I-286) (exchange of glutamate 286 of subunit I for glutamine) mutant cytochrome c oxidase from Rhodobacter sphaeroides has been studied using the flow-flash technique in combination with optical absorption spectroscopy. Proton uptake was measured using a pH-indicator dye. In addition, internal electron-transfer reactions were studied in the absence of oxygen. Glutamate 286 is found in a proton pathway proposed to be used for pumped protons from the crystal structure of cytochrome c oxidase from Paracoccus denitrificans [Iwata et al. (1995) Nature 376, 660-669; E278 in P.d. numbering]. It is the residue closest to the oxygen-binding binuclear center that is clearly a part of the pathway. The results show that the wild-type enzyme becomes fully oxidized in a few milliseconds at pH 7.4 and displays a biphasic proton uptake from the medium. In the EQ(I-286) mutant enzyme, electron transfer after formation of the peroxy intermediate is impaired, CuA remains reduced, and no protons are taken up from the medium. Thus, the results suggest that E(I-286) is necessary for proton uptake after formation of the peroxy intermediate and transfer of the fourth electron to the binuclear center. The results also indicate that the proton uptake associated with formation of the ferryl intermediate controls the electron transfer from CuA to heme a.  相似文献   

16.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates. It is suggested that besides the reaction sequence cytochrome 553 leads to plastocyanin leads to Photosystem I reaction center, a second pathway cytochrome 553 leads to Photosystem I reaction center may operate additionally.  相似文献   

17.
Electron spin echo envelope modulation (ESEEM) spectroscopy was used to investigate electron-nuclear coupling to the N epsilon of the proximal histidine (F8, His93) imidazole in oxyCo(II)-substituted distal histidine (E7, His64) mutants (His-->Leu, His-->Val, His-->Gly, His-->Gln) and recombinant wild-type human myoglobins (Mbs). Nuclear hyperfine and nuclear quadrupole coupling constants decrease in the order: H64L > H64V > or = H64G approximately H64Q > wild-type. The differences in couplings found for the four mutant proteins are correlated with the differences in polarity of the E7 side chain. On the basis of the relative orientation of the nuclear quadrupole and g tensors, obtained by computer simulation of ESEEM spectra, the Co-O-O bond angle of H64G and H64Q appears to be similar to that of oxyCo sperm whale Mb (and possibly wild-type human Mb) at room temperature [Hori et al. (1982) J. Biol. Chem. 257, 3636], while that in H64V and H64L is more obtuse. ESEEM measurements in D2O demonstrate the presence of a hydrogen bond between the distal histidine and bound O2 in the wild-type protein, as was found in oxyCo sperm whale and horse Mbs [Lee et al. (1992) Biochemistry 31, 7274]. This hydrogen bond leads to a reduction in the N epsilon coupling in the wild-type protein as compared to that in the E7 mutants. No hyperfine-coupled deuterons were found in any of the mutants, and therefore, the proposed hydrogen bond between bound O2 and the distal glutamine in H64Q [Ikeda-Saito et al. (1991) J. Biol. Chem. 266, 23641] could not be substantiated.  相似文献   

18.
In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the "peroxy" to "oxoferryl" transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s-1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s-1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA --> heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3-CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.  相似文献   

19.
The contribution of hydrogen bonds to the conformational stability of human lysozyme was investigated by the combination of calorimetric and X-ray analyses of six Tyr --> Phe mutants. Unfolding Delta G and unfolding Delta H values of the Tyr --> Phe mutant proteins were changed by from +0.3 to -4.0 kJ/mol and from 0 to -16 kJ/mol, respectively, compared to those of the wild-type protein. The net contribution of a hydrogen bond at a specific site to stability (Delta Gwild/HB), considering factors affected by substitutions, was evaluated on the basis of X-ray structures of the mutant proteins. In the present study, one of six mutant proteins was suitable for evaluating the strength of the hydrogen bond. Delta Gwild/HB for the intramolecular hydrogen bond at Tyr124 was evaluated to be 7.5 kJ/mol. Results of the analysis of other mutants also suggest that hydrogen bonds of the hydroxyl group of Tyr, including the hydrogen bond with a water molecule, contribute to the stabilization of the human lysozyme.  相似文献   

20.
The C-terminal periplasmic domain of subunit II of the Escherichia coli bo-type ubiquinol oxidase was replaced with the counterpart of the thermophilic Bacillus caa3-type cytochrome c oxidase containing the CuA-cytochrome c domain by means of gene engineering techniques. The chimeric terminal oxidase was expressed by a pBR322 derivative in a terminal oxidase deficient mutant of E. coli, although the amount of the chimeric enzyme was smaller than that of the Escherichia coli bo-type ubiquinol oxidase expressed by the original cytochrome bo-expressing plasmid. The chimeric enzyme showed much higher TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity than the wild-type cytochrome bo, but lower activity than the thermophilic Bacillus caa3-type cytochrome c oxidase. The chimeric subunit II was confirmed to bind to heme C. These results suggest that the CuA-cytochrome c domain grafted to this membrane anchor can facilitate electron transfer from reduced TMPD to low-spin protoheme b in subunit I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号