首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
转炉炼钢工序转炉烟气显热、潜热回收是"负能炼钢"的核心.以某钢厂300 t顶底复吹转炉为例,建立了转炉烟气中CO、O2体积分数随吹炼时间变化的特征模型,分析了起止回收CO体积分数对转炉煤气回收量及热值、蒸汽极限回收量的影响规律.结果表明,当起止回收CO体积分数增加±1%,转炉煤气回收量减少±0.50 m3/t,热值增加±22.3 kJ/m3,蒸汽极限回收量增加±1.77 kg/t.最后从转炉煤气回收、转炉烟气高温显热回收、转炉吹炼初末期低热值煤气回收利用三个角度分析了提升转炉烟气余热余能回收利用率的途径.  相似文献   

2.
文摘     
该厂在一座300吨转炉上安装了转炉气回收装置,用来回收化学能和显热,以产生蒸汽、发电、远热和热水。1983年7月开始回收转炉煤气,并通入高炉煤气内。烟气的显热用作远程供热,于1980年11月投产。安装了60t/h蒸汽锅炉,38巴,420℃,产生的蒸汽供给本公司发电厂。通过发电厂的换热器产生110/90℃的热水。平均每炉回收时间为11.5min,每炉钢产生煤气25000m~3,按煤气CO平均含量60%计算,炉气热值为7660kJ/m~3,每炉回收热量193GJ或0.64GJ/t。此外,每炉还回收蒸汽20t。图12,表1,参考文献2。  相似文献   

3.
针对CO2在首钢京唐300 t转炉的成功试验,分析了从石灰窑回收CO2用于炼钢的关键技术,重点讨论了从石灰窑回收CO2的工艺路线选择、石灰窑烟气CO2提浓技术、石灰窑烟气的预处理技术、提纯技术、存储输送技术、转炉顶吹O2 CO2混合喷吹技术和底吹CO2技术等。并通过试验验证了CO2用于转炉冶炼,不仅可以提高炼钢冶金效果,而且可以增加转炉煤气回收量。认为该工艺的开发可形成石灰窑与炼钢之间的碳素流循环,有利于节能减排,降低碳排放。  相似文献   

4.
针对西昌钢钒转炉干法除尘系统,在分析转炉干法除尘系统泄爆机理的基础上,通过转炉干法除尘系统装料制度控制、氧枪操作制度控制、造渣制度控制、联锁控制条件优化控制及干法除尘系统EC水量、温度控制等系列控制技术的开发应用,实现了转炉干法除尘零泄爆。系统放散烟气含尘量降到6.2mg/Nm3(4mg/Nm3~11mg/Nm3),煤气回收量提高到129Nm3/t钢,蒸汽回收量105kg/t钢,系统节约电耗为3.01kW/t钢,节约循环水消耗2.46t/t钢,净煤气含尘浓度<10mg/Nm3(0.1mg/Nm3~1.0mg/Nm3),炼钢除尘灰量16.4kg/t钢等技术经济指标,解决了除尘系统水污染问题,实现了烟气的无污染排放,具有显著的经济效益和社会效益。  相似文献   

5.
陆坚 《柳钢科技》2010,(2):48-49
净化后转炉煤气主要成分是CO(86%),CO2(10%),N2(3%),是一种很好的燃料和化工原料。对转炉煤气进行净化回收利用是国家产业政策的要求,也是节能降耗以及实现转炉负能炼钢的需要。柳钢120t转炉煤气回收系统为湿法OG系统。从炉口出来的高温烟气经过转炉汽化冷却系统冷却和烟气净化系统净化后,合格的转炉煤气经三通阀切换进入煤气柜混合贮存,再经过电除尘净化后加压送到用户点。  相似文献   

6.
转炉煤气回收规律及其影响因素研究   总被引:1,自引:0,他引:1  
分析了转炉炉气成分和发生量随冶炼时间的变化规律 ,研究了转炉煤气回收量与影响因素之间的关系 ,给出了理想工况下的吨钢转炉煤气最大回收量。结果表明 ,铁水比提高1 % ,吨钢煤气回收量提高 1 0 89m3 /t;供氧强度提高 1m3 /(t·min) ,煤气回收量增加1 1 95 5m3 /t;若将煤气回收限制性条件放宽至CO≥ 3 5 %且O2 <1 % ,吨钢回收量提高1 5 2m3 /t;在理想工况下 ,转炉煤气最大回收量为 1 2 8 83m3 /t。  相似文献   

7.
分析了影响莱钢炼钢厂80t转炉煤气成分含量和热值的因素,通过设备、工艺优化等措施提高煤气热值达到7500kJ/Nm3左右,并提出了遗留问题。  相似文献   

8.
系统分析了冶炼含钒铁水特殊工艺条件下影响转炉煤气回收的诸多因素。通过工业试验优化了相关工序环节的操作和控制水平,如:调整活动烟罩高度,炉口微压控制,优化炼钢吹炼过程的加料制度,确保转炉煤气的平稳回收,优化造渣制度及氧枪操作方式,修订煤气回收限值等,提高了炼钢工序煤气回收水平。在半钢炼钢条件下转炉煤气回收量达119.87 m3/t,煤气热值达5 578.655 k J/m3。  相似文献   

9.
转炉煤气含CO约为60%~80%,平均热值约为8.8MJ/m3,是钢铁企业重要的二次能源,转炉煤气回收占整个转炉工序能源回收的80%~90%,提高转炉煤气回收与利用的水平,是实现负能炼钢的重要手段。我国钢铁企业转炉煤气回收利用与国外先进水平相比还有差距,  相似文献   

10.
为研究石灰石造渣对转炉煤气成分及回收量的影响,在100 t转炉上进行了不同石灰石替代比下的造渣炼钢工业试验。研究结果表明:当铁水温度在1 350~1 650℃,石灰石分解产生的CO2可作为弱氧化剂与铁水中元素反应生成CO,反应次序依次为[Si]、[Mn]、[C]、[Fe];通过工业试验证实,石灰石分解产生的CO2确实可参与铁水氧化反应,随着石灰石替代比的增加,炉气中CO比例升高;通过理论估算,与石灰造渣工艺相比,石灰石造渣炼钢工艺的吨钢煤气回收量提高约16.12%,可见石灰石代替石灰造渣还可以增加转炉煤气回收水平。  相似文献   

11.
随着达钢转炉煤气用户增加,用量加大,同时响应国家节能减排的号召,炼钢厂采取多种模式,精细管理,精心操作,深挖潜力,努力向负能炼钢这一国际标准靠近。目前炼钢转炉煤气回收平均浓度保持在46%-50%之间,吨钢回收量达到110m3以上。炼钢厂2012年全年工序能耗3.66kgce/t,其中7月份炼钢综合工序能耗-1.59kgce/t,首次达到炼钢工序能耗负能炼钢。从2013年1月至7月,月均回收量吨钢达115m3,月均工序能耗-0.016kgce/t,创达钢集团炼钢厂有史以来转炉煤气回收指标新高,连续数月实现全工序负能炼钢。  相似文献   

12.
应用炉口微差压技术,将RD阀的开度与吹炼规律结合起来,减少了外溢烟气量和吸人空气量,增加了回收时间。提高了所回收转炉煤气的质量。回收煤气φ(CO)达65%以上,最高达85%,实现了自动回收转炉煤气;制订了50000m^3转炉煤气柜验收标准;结合转炉煤气的特性,分析研究其组成成分及热值,开发了用户。标准状况下煤气回收量达到吨钢96m^3,最高为102m^3。  相似文献   

13.
泰钢45t转炉煤气回收系统应用"OG"法回收煤气。该系统采用了R-D文氏管、炉口微差压仪表自动调节装置、气体分析装置、干式煤气柜等多项先进技术和设备。应用表明,吨钢回收煤气70m3,煤气热值近6000kJ/m3,年减少大气粉尘排放7 2t,为"负能炼钢"奠定了基础。  相似文献   

14.
技术信息     
《钢铁》2003,38(2)
国内·马钢一钢厂实现负能炼钢MINUS ENGERGY CONSUMPTION STEEL MAKINGAT No.1STEEL MAKING SHOP,MAANSHAN STEEL2 0 0 2年 9月 ,马钢一钢厂已回收能量 3 4.0 kg标煤 / t坯、消耗能量 3 3 .4kg标煤 / t坯 ,两者相较负 0 .6kg标煤 / t坯 ,成为继宝钢、武钢之后在全国实现负能炼钢的厂家。一钢厂自 2 0 0 1年 2月 95 t转炉热负荷试车成功之日起就同步实现了转炉煤气和蒸汽回收 ,并把实现负能炼钢作为攻关目标。该厂规范了煤气回收操作 ,修改煤气回收工艺参数 ,延长煤气回收时间 ,开展氧含量超标及高碳钢煤气回收…  相似文献   

15.
通过对转炉煤气回收量计算模型的确定,计算出转炉煤气回收量的理论极限值,从而根据实际回收量和极限回收量对比,确定转炉煤气回收的潜力和改进方向。经过工艺改进和操作提升,日钢回收转炉煤气从120 m~3/t提高至132 m~3/t,实现了炼钢工序"负能"炼钢。  相似文献   

16.
《酒钢科技》2006,(4):27-27
转炉在炼钢过程中,需要消耗大量的能源,同时,炼钢工艺过程中产生的物理显热及CO气体,又能够通过不同的方法加以回收利用。转炉炼钢的能耗主要来自于氧气、电和水为主的动力消耗(大约为35.4kg/煤)。如果对转炉煤气和蒸汽进行回收,回收煤气的可利用热量大于实际能耗,转炉工序也就实现了负能炼钢。  相似文献   

17.
介绍马钢120 t转炉烟气分析动态控制炼钢技术的多功能应用:启用自学习,自适应功能,针对不同原材料条件,优化供氧造渣制度,实现全自动炼钢新模式;实践证明,本技术实施后,有效监控转炉底吹搅拌效果,w([C])×w([O])浓度积值在0.001 2~0.003 0占78.8%;利用烟气分析CO浓度变化趋势指导操作,降低喷溅率在4.0%以下;优化吹炼工艺,强化脱磷脱硫效果;准确预报钢水终点氧含量,提高脱氧合金化效果,降低吨钢成本5元;增加煤气回收量9 m3/t钢和提高w(CO)5%~8%等显著成效。  相似文献   

18.
摘要:为了解决目前煤气中O2含量超标导致煤气回收率较低的问题,提出向转炉汽化冷却烟道中喷吹除尘焦粉来降低烟气中氧含量的新方法。以热力学计算为基础,分析了焦粉在汽化冷却烟道内与烟气中各组分发生反应的可能性,探讨了不同烟气成分对反应的影响,并通过工业试验研究了不同喷吹速率对焦粉在烟道内的反应效果,以此来探索焦粉对煤气回收质量的影响。结果表明,焦粉与烟道中的O2反应生成CO的趋势最大,随着转炉冶炼的进行,煤气中O2的含量不断降低,当吨钢喷吹焦粉量从0kg/t分别增加到5、7和10kg/t时,煤气中O2体积分数达到回收标准(不大于2%)的时间分别减少了21.65%、40.55%和40.89%;煤气回收时间分别增加了29、77和104s;当吨钢焦粉喷吹量达到10kg/t时,回收煤气中平均氧体积分数则从0.855%降至0.358%。通过工业试验研究结果分析,证明了向汽化冷却烟道中喷吹焦粉的新方法回收超低氧煤气的可行性。  相似文献   

19.
《炼钢》2017,(6)
针对目前转炉煤气低热值和回收率低的问题,提出以中国宝武武钢集团鄂城钢铁有限责任公司35 t转炉煤气回收系统为研究对象来探究制备高品质转炉煤气的新工艺。通过对比不同煤粉喷吹进入转炉汽化冷却烟道内的反应效果,来研究喷吹量对转炉煤气回收质与量的影响。结果表明:在煤气回收期,喷吹煤粉时,煤气中O_2和CO_2含量降低,CO、H2含量和煤气回收总量增加,煤气热值提高。当煤粉喷吹速率为30 kg/min时,转炉煤气中O_2和CO_2体积分数分别降低63.92%和41.19%,CO和H2体积分数分别提高20.09%、240.18%,煤气回收时间增加11.40%。因此,新工艺具有提高转炉煤气回收质和量的优点。  相似文献   

20.
利用转炉冶炼过程中产生的高温烟气的热能,将焦化废水有机物成分在一定量的催化剂的作用下进行高温催化闪速热裂解,焦化废水中的有机物成分热解为在常温下为气态的单炭或双炭碳氢化合物进入转炉煤气中,在提高转炉煤气的热值的同时冷却了转炉烟气。以年产1 000万t钢的炼钢厂为例,利用转炉高温烟气催化热解焦化废水与生化处理相比年节约成本603万元,同时减少转炉除尘新水用量45万m~3左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号